Verknüpfung (Mathematik)

aus Wikipedia, der freien Enzyklopädie
Datei:Binary operations as black box.svg
Illustration einer zweistelligen Verknüpfung , die aus den zwei Argumenten und das Ergebnis zurückgibt.

In der Mathematik wird Verknüpfung als ein Oberbegriff für diverse Operationen gebraucht: Neben den arithmetischen Grundrechenarten (Addition, Subtraktion usw.) werden damit etwa auch geometrische Operationen (wie Spiegelung, Drehung u. a.) sowie weitere Rechenoperationen bzw. gelegentlich auch logische Operatoren erfasst. Eine Verknüpfung legt fest, wie mathematische Objekte gleicher oder ähnlicher Art miteinander ein weiteres Objekt bestimmen. Bei einer relativ kleinen Anzahl von Elementen und einer Verknüpfung mit nur wenigen wie beispielsweise zwei Stellen, an denen Elemente als Operanden stehen können, ist diese Festlegung übersichtlich durch eine Verknüpfungstafel möglich, in der z. B. für eine 2-stellige Verknüpfung alle möglichen Paarungen aufgeführt sind und jeweils deren Resultat angegeben wird, das Ergebnis des Rechnens.

Das Wort Verknüpfung wird auch verwendet, um die Hintereinanderausführung (Verkettung) von Funktionen zu bezeichnen.

Allgemeine Definition

Für eine natürliche Zahl seien Mengen und eine weitere Menge gegeben. Dann wird jede Abbildung des kartesischen Produkts nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -stellige Verknüpfung bezeichnet.[1] Eine solche Verknüpfung ordnet also jedem -Tupel mit eindeutig ein Element der Menge zu. Selbstverständlich können die Mengen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} teilweise oder ganz übereinstimmen.

Im Sonderfall, dass nur vorkommt, also wird die Verknüpfung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underbrace{B\times\dotsb\times B}_{n\text{-mal}}\to B}

innere Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -stellige Verknüpfung oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -stellige Operation auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} genannt. Kommt wenigstens einmal unter den Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_i} vor, etwa

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_i\neq B\ \mathrm{f\ddot ur}\ 1\leq i\leq m} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_i=B\ \mathrm{f\ddot ur}\ m+1\leq i\leq n}

für ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\leq m<n,} so heißt die Verknüpfung äußere -stellige Verknüpfung auf mit Operatorenbereich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_1 \times \dotsb \times A_m} . Die Elemente von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_1 \times \dotsb \times A_m} heißen dann Operatoren.

Eine innere Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -stellige Verknüpfung auf kann man auch als äußere zweistellige Verknüpfung auf mit dem Operatorenbereich betrachten.

Jede Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -stellige Verknüpfung kann als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (n+1)} -stellige Relation aufgefasst werden.

Beispiele

  • Die durch
definierte Abbildung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R\times\R\times\R} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} ist eine dreistellige Verknüpfung bzw. innere dreistellige Verknüpfung auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} .
  • Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} eine Abbildung von nach , so ist durch
(jedem aus der Abbildung und einem Element aus gebildeten Paar wird das Bild dieses Elementes unter der Abbildung zugeordnet)
eine äußere zweistellige Verknüpfung auf mit Operatorenbereich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{f\}} und dem einzigen Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} gegeben.

Nullstellige Verknüpfungen

Als eine nullstellige Verknüpfung von einer Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} nach einer Menge kann eine Abbildung von nach angesehen werden. Es gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A^0 = A^\emptyset = \{f \mid f\colon\, \emptyset \to A\} = \{\emptyset\} = \{0\} = 1,}

daher lässt sich jede dieser Abbildungen wie folgt angeben:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{c}_b\colon \{\emptyset\} \to B,\, \emptyset \mapsto b,} für ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b \in B.}

Jede nullstellige Verknüpfung ist damit konstant und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{c}_b \in B^{\{\emptyset\}} = B^1} lässt sich wiederum als die Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b \in B} auffassen.

Da stets Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B^0 = \{\emptyset\}} gilt, kann jede nullstellige Verknüpfung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{\emptyset\} \to B} als innere Verknüpfung auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} betrachtet werden: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B^0 \to B.}

Einstellige Verknüpfungen

Einstellige Verknüpfungen sind Abbildungen einer Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} nach einer Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} .

Beispiele

  • Gegeben sei eine Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} . Für jedes Element Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} der Potenzmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(A)} , also für jede Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} , sei definiert:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {}^{\operatorname c}\colon X \mapsto X^{\operatorname c} := A \setminus X} (Komplement von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ).
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sin\colon \R \to \R, x \mapsto \sin(x),}
ist eine einstellige Verknüpfung.

Zweistellige (binäre) Verknüpfungen

Besonders häufig wird der Begriff „Verknüpfung“ im Sinn einer zweistelligen Verknüpfung verwendet. Wichtige Spezialfälle sind innere und äußere Verknüpfungen. Zweistellige Verknüpfungen werden oft in Infixschreibweise notiert, also durch ein zwischen den beiden Operanden stehendes Symbol wie etwa ein Pluszeichen.

Drei- und mehrstellige Verknüpfungen

Eher selten spricht man von drei- und mehrstelligen Verknüpfungen. Beispiele für eine dreistellige Verknüpfung sind:

  • die Abbildung, die je drei Vektoren aus dem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}^3} ihr Spatprodukt (aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}} ) zuordnet und
  • die Ternärverknüpfung in einem Ternärkörper.

Partielle Verknüpfungen

Wird in der obigen Definition für (totale) Verknüpfungen der Begriff der (total verstandenen) Abbildung durch partielle Abbildung ersetzt, dann spricht man von einer partiellen Verknüpfung: Es ist dann erlaubt, dass nicht für Parameter (n-Tupel-Kombinationen) ein Verknüpfungswert (d. h. Bildwert, Funktionswert) zugeordnet wird.

Verknüpfungen in der Algebra

Verknüpfungen dienen in der Algebra dazu, algebraische Strukturen zu definieren. Die Verknüpfungen müssen dabei bestimmte Bedingungen (Axiome) erfüllen. Bei partiellen Algebren sind auch partielle Verknüpfungen zugelassen.

Zum Beispiel ist eine Halbgruppe eine Menge mit einer inneren zweistelligen Verknüpfung, die das Assoziativgesetz erfüllt. Die Forderung, dass das Ergebnis der Verknüpfung wieder Element der gegebenen Menge sein soll (Abgeschlossenheit), ist bereits in der Definition der inneren Verknüpfung enthalten.

Weblinks

Einzelnachweise

  1. Gert Böhme: Anwendungsorientierte Mathematik. Springer-Verlag, 2013, ISBN 3-642-49656-3, S. 76.