Woodward-Fieser-Regeln

aus Wikipedia, der freien Enzyklopädie

Woodward-Fieser-Regeln, benannt nach Robert Burns Woodward, Louis Frederick Fieser und Mary Fieser – auch bekannt als Woodward-Regeln – sind empirisch ermittelte Regeln, welche ein Vorhersage der Wellenlänge am Absorptionsmaximum λmax der π→π*-Bande von α,β-ungesättigte Carbonylverbindungen[1][2][3] und von Dienen und Polyenen[4][5][6] – insbesondere von Terpenen und Steroiden – erlauben. Sie haben sich als nützlich für die Analyse von UV-Spektren zur Strukturaufklärung vieler organisch-chemischer Verbindungen, insbesondere von Naturstoffen, erwiesen. Die Woodward-Fieser-Regeln sind ein Inkrementsystem. Das heißt, zu einem Basiswert des Stammchromophores werden je nach Substitution, Substitutionsmuster und anderen strukturellen Parametern, sowie dem Lösungsmittel spezifische Inkremente addiert. Das nach den Woodward-Fieser-Regeln theoretisch berechnete Absorptionsmaximum λmax der π→π*-Bande stimmt in der Regel mit einer Genauigkeit von etwa ± 10 nm mit dem experimentell ermittelten Wert überein.

Woodward-Regeln

Robert Burns Woodward erforsche α,β-ungesättigte Carbonylverbindungen und stellte die ursprünglichen Regeln auf:[1][2]

Stammchromophor λmax/nm
α,β-ungesättiger Aldehyd 210
α,β-ungesättiges Keton 215
α,β-ungesättiger Carbonsäureester 295
Cyclopentenon 202
Cyclohexanon 215
strukturelle Merkmale Δλmax/nm
je zusätzlich konjugierte Doppelbindung + 30
je exocyclische Doppelbindung
(von einem Ring weg, kann auch Teil eines Nachbarringes sein)
05
je homoanulare Cyclodien-Teilstruktur im konjugierten System 05
Lösungsmittel Δλmax/nm
Wasser − 08
Methanol − 01
Ethanol − 01
Chloroform ± 00
1,4-Dioxan 05
Diethylether 07
n-Hexan + 11
Cyclohexan + 11

Der Einfluss der Substituenten, und damit die Inkremente, ist positionsabhängig:

α-Substituenten Δλmax/nm
je Alkoxygruppe + 35
je Alkylgruppe + 10
je Bromgruppe + 25
je Carbonsäureester 06
je Chlorgruppe + 15
je Hydroxygruppe + 35
β-Substituenten Δλmax/nm
je Alkoxygruppe + 30
je Alkylgruppe + 12
je Bromgruppe + 30
je Carbonsäureester 06
je Chlorgruppe + 12
je Dialkylaminrest + 95
je Hydroxygruppe + 30
je Thioethergruppe + 85
γ-Substituenten Δλmax/nm
je Alkoxygruppe + 17
je Alkylgruppe + 18
je Bromgruppe + 30
je Carbonsäureester 06
je Chlorgruppe + 12
je Hydroxygruppe + 50
höhere Substituenten Δλmax/nm
je Alkylgruppe + 18
je Bromgruppe + 30
je Carbonsäureester 06
je Chlorgruppe + 12

Fieser-Regeln

Louis Frederick Fieser und Mary Fieser untersuchten Diosterole und ermittelten Regeln, um Vorhersagen für die Wellenlänge am Absorptionsmaximum λmax zu treffen. Zur Berechnung der Wellenlänge am Absorptionsmaximum von Dienen und Polyenen kann folgende Tabelle dienen:[4][5][6]

Stammchromophor λmax/nm
acyclisches Dien 217
homoannulares, cyclisches Dien
(zwei konjugierte Doppelbindungen im gleichen Ring)
253
heteroannulares, cyclisches Dien
(zwei konjugierte Doppelbindungen verteilt auf zwei Ringe)
214
strukturelle Merkmale Δλmax/nm
je zusätzlich konjugierte, acyclische Doppelbindung + 30
je zusätzlich konjugierte, endocyclische Doppelbindung + 30
je zusätzlich konjugierte, exocyclische Doppelbindung
(von einem Ring weg, kann auch Teil eines Nachbarringes sein)
+ 35
Substituenten Δλmax/nm
je Alkoxygruppe 06
je Alkylgruppe 05
Carbonsäureester haben keinen Einfluss ± 00
je Dialkylaminrest + 60
je Halogen (Chlor, Brom) + 10
je Phenoxygruppe + 18
je Thioethergruppe + 30

Lösungsmittel haben praktisch keinen Einfluss auf die Wellenlänge und können daher vernachlässigt werden.

Beispielberechnungen

Berechnungsbeispiel bei konjugierten Dienen
Stammchromophor 1,3-Butadien: Dien mit zwei konjugierten C=C-Doppelbindungen



Heteroannulares Dien – zwei konjugierte C=C-Doppelbindungen auf zwei Ringe verteilt
Homoannulares Dien – zwei konjugierte C=C-Doppelbindungen in einem Ring
Diene (homoannular) Formula V.3.svg
Heteroannulares Trien – drei konjugierte C=C-Doppelbindungen auf drei Ringe verteilt
Triene (heteroannular) Formula V.2.svg
Stammchromophor (Dien): λmax 217 nm 214 nm 253 nm 214 nm
zusätzliche Konjugation durch eine C=C-Doppelbindung im C-Ring des Steroids: je 30 nm 0 nm 0 nm 0 nm + 1 · 30 nm = 30 nm
exocyclische Doppelbindung am *-markierten Kohlenstoffatom: je 5 nm 0 nm + 1 · 5 nm = 5 nm + 1 · 5 nm = 5 nm + 3 · 5 nm = 15 nm
Alkylsubstituenten (markiert mit ----): je 5 nm 0 nm + 3 · 5 nm = 15 nm + 3 · 5 nm = 15 nm + 5 · 5 nm = 25 nm
Summe = λmax (berechnet) 217 nm 234 nm 273 nm 284 nm
λmax (gemessen, Steroide) 217,5 nm[7] 235 nm 275 nm 283 nm[8]

Fieser-Kuhn-Regel

Die Fieser-Regel gilt nur für kurze Polyene. Bei längeren π-Systemen, wie sie beispielsweise in Carotinen zu finden sind, weichen die theoretischen Werte stärker von den tatsächlichen Werten ab. Die Fieser-Kuhn-Regel kann diesen Fehler beheben. Nach ihr lässt sich die Wellenlänge am Absorptionsmaximum λmax sowie die Absorption εmax wie folgt berechnen:[9]

… Anzahl der Alkylgruppen
… Länge des π-Systemes
… Anzahl der endocyclischen Doppelbindungen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_\text{exo}} … Anzahl der exocyclischen Doppelbindungen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda_\text{max} = \left( 114{,}0 + 5{,}0\cdot m + 48{,}0\cdot n - 1{,}7\cdot n^2 - 16{,}5\cdot R_\text{endo} - 10{,}0\cdot R_\text{exo} \right)\,\text{nm}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon_\text{max} = 1{,}74\cdot10^4\cdot n}

Einzelnachweise

  1. a b Robert Burns Woodward: Structure and the Absorption Spectra of α,β-Unsaturated Ketones. In: J. Am. Chem. Soc. Band 63, Nr. 4, 1941, S. 1123, doi:10.1021/ja01849a066 (englisch).
  2. a b Akul Mehta: Woodward-Fieser rules to calculate wavelength of maximum absorption of conjugated carbonyl compounds. Abgerufen am 31. August 2017 (englisch).
  3. Neil Glagovich: Woodward's Rules for Conjugated Carbonyl Compounds. Central Connecticut State University, 19. Juli 2007, archiviert vom Original am 10. April 2008; abgerufen am 31. August 2017 (englisch).
  4. a b Louis F. Fieser, Mary Fieser, Srinivasa Rajagopalan: Absorption Spectroscopy and the Structures of the Diosterols. In: J. Org. Chem. Band 13, Nr. 6, 1948, S. 800–6, doi:10.1021/jo01164a003, PMID 18106021 (englisch).
  5. a b Akul Mehta: Woodward-Fieser rules to calculate wavelength of maximum absorption for conjugated dienes. Abgerufen am 31. August 2017 (englisch).
  6. a b Neil Glagovich: Woodward-Fieser Rules for Dienes. Central Connecticut State University, 19. Juli 2007, archiviert vom Original am 10. April 2008; abgerufen am 31. August 2017 (englisch).
  7. Notes - An Extension of the Woodward Rules Concerning Alkyl Substituents in Conjugated Aliphatic Systems, J. Org. Chem. 1959, 24, 3, 436–438, doi:10.1021/jo01085a617.
  8. Akul Mehta: Ultraviolet-Visible (UV-Vis) Spectroscopy – Sample Problems Using Woodward-Fieser Rules. 5. August 2012, abgerufen am 31. August 2017 (englisch).
  9. Akul Mehta: Ultraviolet-Visible (UV-Vis) Spectroscopy – Fieser-Kuhn Rules to Calculate Wavelength of Maximum Absorption (Lambda-max) of Polyenes (with Sample Problems). Abgerufen am 31. August 2017 (englisch).