Satz von Ulam
Der Satz von Ulam ist ein mathematischer Lehrsatz auf dem Teilgebiet der Maßtheorie, der auf den Mathematiker Stanisław Marcin Ulam zurückgeht. Der Satz behandelt spezielle Eigenschaften von Borelmaßen auf polnischen Räumen.[1]
Formulierung des Satzes
Der Satz von Ulam lässt sich angeben wie folgt:[1]
- Sei ein polnischer Raum und sei weiter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu \colon \mathfrak {B} (X) \to [0,\infty]} ein Borelmaß auf der σ-Algebra der Borelmengen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} .
- Dann gilt:
-
- (1) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} ist ein reguläres Maß .
- (2) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} ist ein moderates Maß in dem Sinne,
- dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} eine Darstellung als abzählbare Vereinigung der Form[2]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X = \bigcup_{n \in \N} U_n}
- hat, in der jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_n \; (n \in \N)} eine offene Menge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} mit ist.
Verschärfung
Wie Paul-André Meyer zeigte, lässt sich der Satz von Ulam noch erheblich verschärfen, indem man an die Stelle der polnischen Räume die sogenannten Suslinräume treten lässt. Dabei ist ein Suslinraum ein Hausdorffraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} derart, dass dazu ein polnischer Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} mit einer stetigen Surjektion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon X \to S = f(X)} existiert.
Der Satz von Paul-André Meyer besagt dann:[1]
- Jedes Borelmaß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu \colon \mathfrak {B} (S) \to [0,\infty]} auf einem Suslinraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} ist regulär und moderat .
Dass dieser Satz den ulamschen Satz verschärft, ergibt sich angesichts der Tatsache, dass jeder polnische Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} unter der identischen Abbildung stets auch ein Suslinraum ist.
Quellen
- Jürgen Elstrodt: Maß- und Integrationstheorie (= Springer-Lehrbuch - Grundwissen Mathematik). 7., korrigierte und aktualisierte Auflage. Springer-Verlag, Heidelberg (u. a.) 2011, ISBN 978-3-642-17904-4.
- John C. Oxtoby, S. M. Ulam: On the existence of a measure invariant under a transformation. In: Ann. of Math. (2). Band 40, 1939, S. 560–566, JSTOR:1968940. MR0000097
- John C. Oxtoby: Invariant measures in groups which are not locally compact. In: Transactions of the American Mathematical Society. Band 60, 1946, S. 215–237, JSTOR:1990145. MR0018188