Sub-Wahrscheinlichkeitsmaß
Ein Sub-Wahrscheinlichkeitsmaß, auch Sub-Wahrscheinlichkeitsverteilung genannt, ist eine Mengenfunktion in der Stochastik, die eine Verallgemeinerung der Wahrscheinlichkeitsmaße darstellt. Im Gegensatz zu Wahrscheinlichkeitsmaßen wird bei Sub-Wahrscheinlichkeitsmaßen der Obermenge immer eine Zahl kleinergleich 1 und nicht exakt 1 zugeordnet.
Definition
Ein Sub-Wahrscheinlichkeitsmaß ist eine Mengenfunktion
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu: \mathcal A \to [0,1] }
auf einem Messraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X, \mathcal A) } , also einer Grundmenge und einer σ-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A } über dieser Grundmenge mit den folgenden Eigenschaften:
- σ-Additivität: Für jede abzählbare Folge von paarweise disjunkten Mengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_1, A_2, A_3, \dots } aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A } gilt
- Es ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(X) \leq 1 } .
Elementare Eigenschaften
Die endlichen signierten Maße über einem gemeinsamen Messraum bilden einen reellen Vektorraum. In diesem Raum enthalten die Sub-Wahrscheinlichkeitsmaße die Menge der Wahrscheinlichkeitsmaße als konvexe Teilmenge, umgekehrt bilden die Sub-Wahrscheinlichkeitsmaße selbst eine konvexe Teilmenge der endlichen Maße und erben somit viele deren Eigenschaften. Exemplarisch sei hier genannt:
- Es ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(\emptyset)=0 }
- Monotonie: Ein Sub-Wahrscheinlichkeitsmaß ist eine monotone Abbildung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mathcal A, \subset) } nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ([0,1], \leq ) } , das heißt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A, B \in \mathcal{A}} gilt
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle B\subset A\implies \mu (B)\leq \mu (A)} .
- σ-Subadditivität: Für eine beliebige Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (A_n)_{n\in\N}} von Mengen aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}} gilt .
- σ-Stetigkeit von unten: Ist eine monoton gegen wachsende Mengenfolge in Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\mathcal {A}}} , also , so ist .
- σ-Stetigkeit von oben: Ist eine monoton gegen fallende Mengenfolge in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A } , also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_n \downarrow A } , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} \mu(A_n) = \mu(A)} .
Eigenschaften auf verschiedenen Grundräumen
Die Eigenschaften von Sub-Wahrscheinlichkeitsmaßen in Abhängigkeit von der Struktur der Grundräume (Topologischer Raum, metrischer Raum, Polnischer Raum o. ä.) entsprechen im Wesentlichen den Eigenschaften von endlichen Maßen auf ebendiesen Räumen und sind im dortigen Artikel ausgiebig erläutert.
Einer der wenigen Unterschiede von Sub-Wahrscheinlichkeitsmaßen zu endlichen Maßen ist, dass Folgen oder Mengen von Sub-Wahrscheinlichkeitsmaßen immer beschränkt sind. Dabei heißt eine Folge von Maßen beschränkt, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sup_{n \in \N}\{\|\mu_n\|_{\operatorname{TV}}\} <\infty } ist. Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|\mu_n\|_{\operatorname{TV}} } ist hierbei die Totalvariationsnorm bezeichnet. Dies ist aber für Sub-Wahrscheinlichkeitsmaße immer erfüllt, da per Definition
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(X) =\|\mu_n\|_{\operatorname{TV}}\leq 1 }
ist. Dies führt beispielsweise zu alternativen Formulierungen beim Satz von Prochorow, da dann auf die Beschränktheit verzichtet werden kann. Er lautet dann:
- Ist ein separabler metrischer Raum und ist eine Menge von Sub-Wahrscheinlichkeitsmaßen auf der Borelschen σ-Algebra straff, so ist die Menge relativ folgenkompakt bezüglich der schwachen Konvergenz.
- Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X } ein polnischer Raum, so ist eine Menge von Sub-Wahrscheinlichkeitsmaßen genau dann relativ folgenkompakt bezüglich der schwachen Konvergenz, wenn die Menge straff ist.
Des Weiteren gibt es noch spezielle Formulierungen des Portmanteau-Theorems für Sub-Wahrscheinlichkeitsmaße.
Literatur
- Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.