Durchschnittliche Größenordnung

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 1. Oktober 2019 um 15:55 Uhr durch imported>Wolny1(2936578) (Dass meine Antworten für dich "persönlich verletzend" sind, tut mir leid, das war nicht beabsichtigt (aber versuche sie doch mal "objektiv" mit deinen an mich gerichteten Vorwürfen zu vergleichen ...). Für mich ist vor allem verletzend (und _keinesfalls_ hinnehmbar), dass du die rel. lange Arbeit, die ich in die Überarbeitung des Artikels gesteckt habe, innerhalb einer Sekunde vernichtest. Ich wiederhole mein Angebot, Dir bei Unklarheiten gerne auf der Disk im Detail Rede und Antwort zu stehen.).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

In der Zahlentheorie bezeichnet die durchschnittliche Größenordnung einer zahlentheoretischen Funktion eine einfachere Funktion, die „im Mittel“ dieselben Werte annimmt.[1][2]

Definition

Es sei eine zahlentheoretische Funktion. Man sagt, die durchschnittliche Größenordnung von ist , wenn für die asymptotische Gleichheit

gilt. Es ist üblich, eine Näherungsfunktion zu wählen, die stetig und monoton ist. Aber auch damit ist sie keineswegs eindeutig bestimmt.

Beispiele

Werte und durchschnittliche Größenordnung von r2(n)
Werte und durchschnittliche Größenordnung von r4(n)
Werte und durchschnittliche Größenordnung von r8(n)
[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]: Datei fehlt
Werte und durchschnittliche Größenordnung von σ1
Datei:Omega dgO.svg
Werte und durchschnittliche Größenordnung von ω und Ω

Die durchschnittliche Größenordnung der Quadratsummen-Funktion bestimmt man aus der Summe[3]

.

Das ist anschaulich die Anzahl der (ganzzahligen) Gitterpunkte in einer -dimensionalen Kugel mit dem Radius und darum näherungsweise gleich dem Kugelvolumen. Genauer lässt sich (mit der Landau’schen O-Notation) rekursiv ableiten

,

wobei die Konstanten die Volumina der -dimensionalen Einheitskugeln sind:

Die durchschnittliche Größenordnung von ist damit , also z. B. .

Weitere Beispiele

  • Die durchschnittliche Größenordnung der Eulerschen Phi-Funktion ist .
  • Die durchschnittliche Größenordnung der Teileranzahlfunktion ist . Genauer gilt mit der Eulerschen Konstanten
.
  • Die durchschnittliche Größenordnung der Teilerfunktion für ist mit der Riemannschen Zetafunktion .
  • Die durchschnittliche Größenordnung der Ordnung , also der Anzahl der (nicht notwendigerweise verschiedenen) Primfaktoren von wie auch von als Anzahl der verschiedenen Primfaktoren ist . Genauer gilt (Satz von Hardy und Ramanujan)
mit den Konstanten (Mertens-Konstante) und
Für beide Funktionen sind außerdem durchschnittliche und normale Größenordnung gleich.
  • Der Primzahlsatz ist äquivalent zur Feststellung, dass die durchschnittliche Größenordnung der Mangoldtfunktion gleich ist.
  • Der Primzahlsatz ist auch äquivalent zur Feststellung, dass die durchschnittliche Größenordnung der Möbiusfunktion gleich ist.

Siehe auch

Weblinks

Eric W. Weisstein: Mertens Constant. In: MathWorld (englisch).

Einzelnachweise

  1. E. Krätzel: Zahlentheorie. VEB Deutscher Verlag der Wissenschaften, Berlin 1981, S. 132.
  2. G. H. Hardy, E. M. Wright: Einführung in die Zahlentheorie. R. Oldenbourg, München 1958, S. 300.
  3. E. Krätzel: Zahlentheorie. VEB Deutscher Verlag der Wissenschaften, Berlin 1981, S. 197.