Durchbiegung

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 23. Februar 2020 um 14:44 Uhr durch imported>Anonym~dewiki(31560) (Änderung 197082987 von 2003:CD:D747:D600:99F5:2460:AB0D:7917 rückgängig gemacht;).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
unten: eine Biegelinie (blau), deren Abstand von der Geraden (schwarz) an einer Stelle x1 die örtliche Durchbiegung w1 ist

Als Durchbiegung länglicher Gegenstände wie Balken oder Stäben wird der Versatz zwischen belasteter und unbelasteter Lage bezeichnet, der bei Biegebelastung quer zur Längsachse entsteht.

Die Durchbiegung lässt sich bei linear-elastischer Verformung mit Hilfe der Balkentheorie berechnen. Als Durchbiegung wird i. d. R. der Versatz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_1} bezeichnet, der in der dabei ermittelten Biegelinie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x)} an einer Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1} dargestellt wird.

Durchbiegung von Balken

Die erste Biegetheorie stammt von Galilei (1564–1642). Weiter ausgebaut wurde sie v. a. durch das Hookesche Gesetz (1678) sowie im 17. und 18. Jahrhundert durch Forschungen von Jakob I Bernoulli, Leonhard Euler und Claude Navier.

Unter der Annahme, dass y und z die Hauptträgheitsachsen sind (y horizontal nach hinten und z vertikal) und dass sich die Krümmung Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \kappa _{y}(x)} in y-Richtung, d. h. die Ableitung des Steigungswinkels w' in der vertikalen xz-Bildebene, an der Stelle x wie folgt berechnen lässt: [1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa_y(x) = -\frac{\frac{\mathrm d^2w(x)}{\mathrm dx^2}}{\left( 1 + \left( \frac{\mathrm dw(x)}{\mathrm dx} \right) ^2 \right) ^{1{,}5}} \approx -\frac{\mathrm d^2w(x)}{\mathrm dx^2} = -{w}''(x)} ,

gilt:

 [1][2]

mit

  • Krümmung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa_y^{b}(x) = \frac{M_y(x)}{EI_{yy}(x)}} aufgrund von Biegung (unter Annahme der Balkentheorie)
    • Biegemoment My quer zur Stabrichtung, an der Stelle x
    • Biegesteifigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle EI_{yy}(x) = E \cdot I_{yy}(x)}
  • eingeprägter Krümmung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa^{e}_y(x)} (z. B. zufolge Temperaturdifferenz)
  • Schubdeformation zufolge Querkraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V}
    • Schubsteifigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle GA(x)}
      • Schubmodul Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G}
      • Balken-Querschnittsfläche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} in der yz-Ebene.

Für die Biegelinie eines hinreichend elastischen, schlanken Bauteiles mit konstantem Querschnitt lautet eine oft verwendete Näherungsformel der Krümmung für betragsmäßig kleine Steigungswinkel w'≈0 unter ausschließlicher Momentenbelastung (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V = 0 \Rightarrow \gamma = 0} ):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa_y(x) = -w''(x) \approx \frac{M_y(x)}{E \cdot I_y}}

Die eigentlich gesuchte Durchbiegung w erhält man durch zweimalige Integration der Krümmung unter Berücksichtigung der Rand- und Übergangsbedingungen (u. a.: keine Durchbiegung an den Lagerstellen, d. h. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x = 0) = w(x = L) = 0} ):

Beispiele

1. Beispiel

Wirkt die Kraft F mittig (d. h. bei der halben Stablänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac l 2} ) auf einen Träger mit konstanten Querschnittseigenschaften auf zwei Stützen, so ist das Biegemoment und damit auch die Stabkrümmung in der Stabmitte am größten (Erläuterung hier):

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \leq x \leq \frac l 2} gilt unter Vernachlässigung der Schubverformungen (GA=∞):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_y(x) = \frac F 2 \cdot x}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow w''(x) = - \frac{\frac F 2 \cdot x}{EI}}

damit folgt unter Berücksichtigung der Randbedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x = 0) = 0} und der Übergangsbedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w'(x = \frac l 2) = 0} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x) = - \frac{F \cdot x^3}{12 EI} + \frac{F \cdot l^2 \cdot x}{16 EI}}

und somit:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_\mathrm{max} = \frac{F \cdot l^3}{48 EI}}

2. Beispiel

Wirkt eine konstante Liniengleichlast ( in N/m)[3] auf einen Träger auf zwei Stützen mit konstanten Querschnittseigenschaften, so gilt unter Vernachlässigung der Schubverformungen (GA=∞):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x) = \frac{q_0}{12\cdot EI} \left( -l \cdot x^3 + \frac{x^4}2 + \frac{l^3 \cdot x}2 \right)}

Dies ergibt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_\mathrm{max} = w \left( x = \frac l 2 \right) = \frac{5 \cdot l^4 \cdot q_0}{384 \cdot EI}}

Anmerkung:
Bei Linienlast Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q(x)} ist Ausgangsgleichung die 4. Ableitung der Biegelinie:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w''''(x) = \frac{q(x)}{EI}}

Diese (mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q(x) = q_0} ) wurde viermal integriert, wobei nach dem zweiten Integrieren als Zwischenergebnis der Zusammenhang zwischen der Biegelinie und dem Biegemomentverlauf gefunden wurde:

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle w''(x)=-{\frac {M(x)}{EI}}={\frac {q_{0}\cdot x}{2\cdot EI}}\cdot (x-l)}

Durchbiegung von Kreisflächen

Bei flächenhafter Ausdehnung des Gegenstandes wird die Berechnung recht kompliziert, lässt sich aber bei Kreisflächen – etwa für Membranen (z. B. Lautsprecher) oder große Linsen (z. B. Fernrohrobjektive) – ebenfalls abschätzen.

Hat die Membran eine nur geringfügige Dicke d, so folgen die Biegemomente einer radialen bzw. tangentialen Differentialgleichung. Die Biegelinie der Kreismembran erfordert aber eine zusammengesetzte Differentialformel, die bei einer Querkraft Q genähert lautet:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm d^3w}{\mathrm dr^3} + \frac{1}{r}\frac{\mathrm d^2w}{\mathrm dr^2} - \frac{1}{r^2}\frac{\mathrm dw}{\mathrm dr} = \frac{Q}{D}}

mit

  • Widerstandsmoment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D = \frac{E \cdot d^3}{12 \cdot (1 - \nu^2)}}

Komplexere Fälle

Solange ein Gegenstand sich auf einer Ebene mit Querschnittseigenschaften/Plattenerzeugendeneingenschaften eindeutig abbildbar und homogen, orthotrop und linear elastisch aufgebaut ist, bietet die analytische Mechanik Lösungsmöglichkeiten auch für andere regelmäßige Formen (Airy’sche Spannungsfunktion). Auch Fälle mit unterschiedlichen Materialien sind genähert lösbar, wenn ihre Verbindungsstellen mechanisch klar definiert sind, z. B. bei axialer Anordnung.

Komplexere Formen sind jedoch nicht streng berechenbar. Sie werden oftmals durch Biegeversuche im Labor oder mathematisch-physikalisch durch Zerlegung in netzartige Teile (v. a. Finite-Elemente-Methoden) untersucht. Für Beton gibt es für die Baupraxis ausreichend genaue Annahmen, um es im ungerissenen Bereich (der Mikrorisse, jedoch keine Makrorisse enthält) als verschmiert homogenes Material betrachten zu können.

Literatur

  • Heinz Parkus: Mechanik der festen Körper, 2. Auflage. Springer-Verlag, Wien 1966, ISBN 3-211-80777-2
  • Th. Dorfmüller, W. Hering, K. Stierstadt: Ludwig BergmannClemens Schaefer Lehrbuch der Experimentalphysik. Band 1: Mechanik, Relativität, Wärme. 11., neubearb. Auflage, De Gruyter, Berlin 1998, ISBN 3-11-012870-5.
  • H. Mang, G Hofstetter: Festigkeitslehre. Springer Verlag, WienNewYork 2008 (3. Auflage), ISBN 978-3-211-72453-8, S. 176; 249.
  • Karl-Eugen Kurrer: Geschichte der Baustatik. Auf der Suche nach dem Gleichgewicht, Ernst und Sohn, Berlin 2016, ISBN 978-3-433-03134-6.

Siehe auch

Einzelnachweise

  1. a b H. Mang, G Hofstetter: Festigkeitslehre. Springer Verlag, WienNewYork 2008 (3. Auflage), ISBN 978-3-211-72453-8, S. 176; 249
  2. Pichler, Bernhard. Eberhardsteiner, Josef: Baustatik VO - LVA-Nr 202.065. Grafisches Zentrum an der Technischen Universität Wien, TU Verlag (Memento des Originals vom 13. März 2016 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/shop.tuverlag.at Wien 2016 ISBN 9783903024175 Kapitel 2.7.1 Queranteile und 10.2 Ausgewählte Lastglieder für die Queranteile
  3. Tobias Renno: www.statik-lernen.de. Abgerufen am 23. August 2017.