Biegemoment
Als Biegemoment wird ein Moment bezeichnet, das ein schlankes (Stab, Balken, Welle o. ä.) oder dünnes Bauteil (Platte o. ä.) biegen kann.
Biegemoment in der Balkentheorie
Das Verhalten eines schlanken Bauteils bzw. eines Balkens unter Belastung ist Gegenstand der Balkentheorie. Insbesondere wird mithilfe der Festigkeitslehre und der Elastizitätslehre sein Verhalten unter einem ihn belastenden Biegemoment untersucht. Anstatt von der Balkentheorie wird deshalb oft, bzw. im engeren Sinne von der Biegetheorie des Balkens gesprochen.
Mit Hilfe der theoretischen Einzeldisziplinen Festigkeitslehre und Elastizitätslehre werden die aus dem belastenden Biegemoment folgenden Biegespannungen im Balkeninneren und die äußere elastische Ver-Biegung (z. B. Durchbiegung) des Balkens errechnet und mit den jeweils zulässigen Werten verglichen. Coulomb war der erste, der im Rahmen der von ihm 1773 vollendeten Balkentheorie die Biegespannungen zutreffend quantifizierte.[2] Die Biegespannungen sollen kleiner als die für elastische Verformung zulässigen Material-Werte sein (Festigkeitsnachweis gegen plastische Verformung oder Bruch). In manchen Anwendungen liegt eine zusätzlich Einschränkung in Form einer zulässigen (elastischen) Ver-Biegung vor. Diese soll vom errechneten Wert nicht überschritten werden.
Die in einer Querschnitts-Fläche des Balkens aufsummierte Biegespannung[3] ist dem Biegemoment an dieser Stelle proportional. Im Querschnitt verläuft sie von maximaler Druck- am inneren Rand (konkave Biegung) über Null in der neutralen Zone zu maximaler Zugspannung am äußeren Rand (konvexe Biegung). Der Festigkeitsnachweis wird i. d. R. mit der maximalen Zugspannung durchgeführt (die von einem Balkenmaterial ertragbare Druckspannung ist i. d. R. die größere).
Die Ver-Biegung des Balkens wird durch seine Krümmung, die sich an jeder Querschnitts-Stelle ebenfalls proportional zum dort wirkenden Biegemoment einstellt, repräsentiert. Zur Aussage über z. B. eine zulässige Durchbiegung dient die aus der über die Balkenlänge veränderlichen Krümmung ermittelte Biegelinie.
Beispiele für Biegemoment-Verlauf am Balken
Kragbalken, Einzelkraft am freien Ende
Ein einseitig eingespannter Kragbalken wird am freien Ende im Abstand durch eine Kraft belastet (siehe nebenstehende Abbildung). Der Biegemoment-Verlauf ist
- .
An der Einleitungsstelle () der Kraft ist es Null. Bis zur Einspannstelle () steigt es linear auf seinen maximalen Wert .
An den Enden abgestützter Balken, Einzelkraft dazwischen
Zur Berechnung der inneren Momente wird das Bauteil an der interessierenden Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} gedanklich durchgeschnitten, und es werden diejenigen Momente betrachtet, die an einem Teilstück an seiner Schnittstelle wirken. Das Biegemoment an einer Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} ist damit die Summe aller Drehmomente, die von Kräften auf einer Seite der Schnittstelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} verursacht werden.[4]
Im an seinen Enden gelagerten Balken mit Einzellast (siehe nebenstehende Abbildung) unterliegt das linke Teilstück einem rechtsdrehenden Drehmoment (in der technischen Mechanik kurz Moment genannt), welches mit Hilfe der Auflagekraft FL am linken Lager beschreibbar ist. Das Moment wächst von Null am Auflager linear bis zum Maximalwert an der Stelle der Last F. Rechts davon kommt aus der Last F ein vom Wert Null bis zum gleichen Maximalwert am rechten Auflager linear ansteigendes, linksdrehendes Moment hinzu, so dass die Momenten-Summe vom Maximalwert an der Last-Stelle bis Null am rechten Ende linear abnimmt.[5]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M(x)=\begin{cases} \frac{F}{2} \cdot x & \text{(links der Mitte) }x < \frac{l}{2} \\ \frac{F}{2} \cdot (l-x) & \text{(rechts der Mitte) }x > \frac{l}{2} \end{cases} }
Sonderfall mittige Last: Das bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x = l/2} maximale Biegemoment hat den Wert
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{max} = \frac{F \cdot l} 4}
Biegemoment und Biegelinie
Die durch die Biegemoment-Belastung entstehende elastische Verformung wird mit der Biegelinie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x)} beschrieben. Für einen Stab konstanten Querschnitts gilt für deren Krümmung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w''(x)} die folgende Näherungs-Gleichung:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w''(x) = -\frac{M_y(x)}{E \cdot I_y}}
mit
- der Krümmung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w''(x)} (Variable x in Balkenrichtung)
- dem Elastizitätsmodul Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} (eine Materialeigenschaft)
- dem axialen Flächenträgheitsmoment (eine geometrische Größe des konstanten Balken-Querschnitts; Index y: Biegung um zur x-Achse senkrechten y-Achse)
Die Krümmung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w''} ist proportional zum Biegemoment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_y} , was z. B. in der nebenstehend abgebildeten Biegelinie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x)} erkennbar ist: Biegemoment u, Krümmung in Balkenmitte maximal und an den Enden Null (Krümmungsradius minimal bzw. unendlich groß = gerades Balkenende)
Die Auslenkung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x)} der Biegelinie wird durch zweimaliges Integrieren des Krümmungsverlaufs ermittelt.
Biegemoment und Biegespannung
Die für den Festigkeitsnachweis zu ermittelnden Biegespannungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_x(x,z)} in einem Balkenquerschnitt sind dem dort wirkenden Biegemoment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_y(x)} , wie in folgender Näherungs-Gleichung für einen Balken mit konstantem Querschnitt angegeben ist, proportional:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma(x,z) = \frac{M_y(x)}{I_y}\cdot z} (Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} in Balkenrichtung, Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} in Richtung Balkenhöhe).
Die Proportionalität mit dem Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} von der neutralen Balkenschicht zeigt an, dass die Biegespannung in den Randschichten am größten ist. Die dort herrschende Biegespannung ist:
- mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_y= \frac{I_y}{z_\text{Rand}}} (Widerstandsmoment im Balkenquerschnitt gegen Biegung um die y-Achse).
Einzelnachweise
- ↑ Sogenannte „reine Biegung“ (siehe hier), die selten vorkommt. Meistens liegt „Querkraft-Biegung“ vor: quer auf den Balken wirkt eine mit einer Teillänge des Balkens als Hebelarm multiplizierte Kraft.
- ↑ Karl-Eugen Kurrer: The History of the Theory of Structures. Searching for Equilibrium. Ernst & Sohn, Berlin, ISBN 978-3-433-03229-9, S. 405 ff.
- ↑ Das Vorzeichen bleibt unbeachtet. Druck- und Zugspannung sind gleichermaßen Folge eines Biegemomentes.
- ↑ Alfred Böge (Hrsg.): Handbuch Maschinenbau: Grundlagen und Anwendungen der Maschinenbau-Technik. 20. Auflage. Springer DE, 2011 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Die von rechts nach links führende Betrachtung führt mit Hilfe der rechten Auflagerkraft FR über ein linksdrehendes Moment zum gleichen Ergebnis.