Robbins-Konstante

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 30. Juni 2021 um 21:09 Uhr durch imported>Anonym~dewiki(31560) (→‎Erläuterung: Tippfehler korrigiert: Die Differentiale stimmten nicht? dx3 und dy3 musstwn durch dz1 und dz2 ersetzt werden.).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die Robbins-Konstante, benannt nach David P. Robbins, ist eine geometrische Konstante, die den erwarteten euklidischen Abstand zweier Punkte des dreidimensionalen Einheitswürfels Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,1]^3\subset \R^3} angibt, die zufällig, unabhängig und gleichverteilt gezogen werden. Die Konstante hat dabei den folgenden Wert:[1]

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\frac {4+17{\sqrt {2}}-6{\sqrt {3}}-7\pi }{105}}+{\frac {\ln(1+{\sqrt {2}})}{5}}+{\frac {2\ln(2+{\sqrt {3}})}{5}}.}

Ihre Dezimalentwicklung beginnt mit (Folge A073012 in OEIS):[2]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}66170718226717623515583\ldots}

Erläuterung

Der graue Bereich besteht aus den Punkten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1,x_2)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1-x_2)^2\le t} , dessen Fläche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(t)} ist.

Es soll kurz angedeutet werden, warum es hier zu einem derart komplizierten Ausdruck kommt. Letztlich geht es um das Integral

,

dessen Berechnung mittels wahrscheinlichkeitstheoretischer Ansätze wie folgt durchgeführt werden kann. Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_1,Y_1,Z_1)} und die zufällig gezogenen Punkte, so muss zur Ermittlung des gesuchten erwarteten Abstandes die Wahrscheinlichkeitsverteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{(X_1-X_2)^2+(Y_1-Y_2)^2+(Z_1-Z_2)^2}} ermittelt werden. Die Wahrscheinlichkeitsverteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(t):=P(\{(X_1-X_2)^2\le t\})} hat die Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(t)=1-(1-\sqrt{t})^2,\quad t\in [0,1]} , wie an nebenstehender Skizze abgelesen werden kann. Die zugehörige Wahrscheinlichkeitsdichte erhält man durch Ableiten: . Die Wahrscheinlichkeitsdichte der Summe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_1-X_2)^2+(Y_1-Y_2)^2+(Z_1-Z_2)^2} ist dann die Faltung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f*f*f} , wobei komplizierte Integrale entstehen. Die zugehörige Wahrscheinlichkeitsverteilung Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle G(t)=\int _{0}^{t}(f*f*f)(s)\mathrm {d} s} beschreibt die Summe der Quadrate der Koordinatendifferenzen, aber wir benötigen die Wurzel aus dieser Summe. Die gesuchte Wahrscheinlichkeitsverteilung ist daher Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H(t)=G(t^2)} mit zugehöriger Dichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h(t):= \tfrac{\mathrm{d}G(t^2)}{\mathrm{d}t} = 2t\cdot (f*f*f)(t^2)} . Das Integral Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int th(t) \mathrm{d}t} ist schließlich der gesuchte Erwartungswert. Die aufwändigen Rechnungen sind in der unten angegebenen Arbeit[3] mit Maple-Unterstützung ausgeführt, wobei statt des Einheitswürfels der noch kompliziertere Fall eines Quaders behandelt ist.

Einzelnachweise

  1. Robbins, David P.; Bolis, Theodore S. (1978), Average distance between two points in a box (solution to elementary problem E2629), American Mathematical Monthly, 85 (4): 277-278
  2. Simon Plouffe: The Robbins Constant. Miscellaneous Mathematical Constants.
  3. Johan Philip: The probability distribution of the distance between two random points in a box