No-go-Theorem

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 5. September 2021 um 09:51 Uhr durch imported>Cepheiden(29427) (Schreibweise wie Lemma).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Als No-go-Theorem wird in der theoretischen Physik und anderen mathematischen Wissenschaften ein Theorem bezeichnet, dessen Aussage die Unmöglichkeit bestimmter Prozesse oder Situationen unter den gegebenen Voraussetzungen ist.

Bekannte Beispiele sind der Zweite Hauptsatz der Thermodynamik (es gibt kein Perpetuum mobile zweiter Art), das Earnshaw-Theorem (die Maxwell-Gleichungen erlauben kein stabiles Gleichgewicht für ein Teilchen in elektrostatischen Feldern), das No-Cloning-Theorem (in der Quantenmechanik gibt es keinen Prozess, der einen beliebigen, unbekannten Quantenzustand kopiert) oder das Landauer-Prinzip (es ist unmöglich, ein Bit an Information zu löschen, ohne Wärme an die Umgebung abzugeben).

Vorkommen und Verwendung

No-go-Theoreme kommen in vielen stark mathematisierten Gebieten der Wissenschaft vor, vor allem in der Theoretischen Physik.[1] Felder, in denen es zahlreiche einflussreiche No-go-Theoreme gibt, sind zum Beispiel die Statistische Physik und Grundlagen der Thermodynamik, die Grundlagen der Quantenmechanik und Quantenfeldtheorie oder die Quanteninformatik. Aber es gibt auch anwendungsnahe Beispiele wie das Earnshaw-Theorem der Elektrostatik oder die Antidynamo-Theoreme. Außerhalb der Physik gibt es entsprechende Sätze auch in der Philosophie,[2] der Mathematik[3] oder der Informatik.[4]

Verwendung

Werden die Aussagen eines No-go-Theorems durch die Messdaten eines Experiments verletzt, kann man dies als Widerlegung (Falsifikation) der Theorie auffassen, auf der das Theorem beruht. Ein bekanntes Beispiel dafür ist die Bellsche Ungleichung, die besagt, dass unter den Annahmen des lokalen Realismus, bestimmte Korrelationen nicht oberhalb einer gegebenen Schranke liegen können. Die Vorhersagen der Quantenmechanik und die Ergebnisse von Bell-Experimenten zeigen eine Verletzung der Schranke und beweisen damit die Nichterfüllung mindestens einer der Voraussetzungen des Theorems in unserem Universum.[5] Andererseits lässt sich eine hypothetische Maschine (oder ein postulierter Effekt) als im Rahmen einer bestimmten Theorie unmöglich widerlegen, wenn man zeigen kann, dass sie ein No-go-Theorem der Theorie verletzt. Damit erübrigt sich dann, den Fehler in der Konstruktion des vorgeschlagenen Mechanismus' zu suchen.

Beispiele

Literatur

  • Andrea Oldofredi: No-Go Theorems and the Foundations of Quantum Physics. In: J. Gen. Phil. Sci. Band 49, Nr. 3, 2018, S. 355–370, arxiv:1904.10991 (englisch).

Weblinks

  • Richard J. Lipton, Kenneth W. Regan: No-Go Theorems. 13. März 2013; (englisch).

Einzelnachweise

  1. Richard J. Lipton, Kenneth W. Regan: No-Go Theorems. 13. März 2013; (englisch).
  2. Michael E. Cuffaro: Reconsidering No-Go Theorems from a Practical Perspective.
  3. Maaike Zwart, Dan Marsden: Don't Try This at Home: No-Go Theorems for Distributive Laws. arxiv:1811.06460 (englisch).
  4. In die Interpretation der Experimente gehen immer noch weitere Annahmen, z. B. über die Imperfektionen der Detektoren und die Unabhängigkeit der Wahl der Messrichtung ein.
  5. Carsten Held: The Kochen-Specker Theorem. In: Edward N. Zalta (Hrsg.): The Stanford Encyclopedia of Philosophy. Frühjahr 2018 Auflage. (englisch, stanford.edu).
  6. Vgl. allerdings Argumente hier, dass das Bell’sche und verwandte Theoreme noch mit einem expliziten theoretischen Kontext versehen werden müssen, bevor sie als No-go-Theoreme gelten können.
  7. Hartmut Wittig: Where did the 'No-go' theorems go? In: CERN Courier. Band 40, Nr. 6, 2000, S. 23 (englisch, cern.ch [PDF]).