Wechselwirkungsbild

aus Wikipedia, der freien Enzyklopädie

Das Wechselwirkungsbild (auch bezeichnet als Wechselwirkungsdarstellung bzw. nach Paul Dirac als Dirac-Bild oder Dirac-Darstellung) ist in der Quantenmechanik ein Modell für den Umgang mit zeitabhängigen Problemen unter Berücksichtigung von Wechselwirkungen.

Es ist dem Heisenberg- und dem Schrödinger-Bild weitgehend äquivalent, d. h. alle physikalisch relevanten Größen (Skalarprodukte, Eigenwerte usw.) bleiben die gleichen (siehe auch Mathematische Struktur der Quantenmechanik).

Zur Kennzeichnung, dass man das Wechselwirkungsbild verwendet, werden Zustände und Operatoren gelegentlich mit dem Index „I“ (wie engl. interaction) oder „D“ (wie Dirac-Bild) versehen: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\psi_{\rm D}(t)\rangle} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat A_{\rm D}(t) \, .}

Geschichte

Das Wechselwirkungsbild wurde 1926 von Paul Dirac in die Quantenmechanik eingeführt.[1] In Zusammenhang mit Quantenelektrodynamik wurde das Wechselwirkungsbild auch von Tomonaga[2], Dirac[3] und (in einer unveröffentlichten Arbeit als Student am City College of New York) von Julian Schwinger (1934) eingeführt.[4] Die Behandlung der relativistischen Quantenfeldtheorie im Wechselwirkungsbild mit Zweiter Quantisierung fand danach Eingang in die Standardlehrbücher.

Annahmen

Im Wechselwirkungsbild gelten folgende Annahmen:

  • Der Hamilton-Operator des Systems ist gegeben durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H = \hat H_0 + \hat H_1} , wobei
    • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_0 = \operatorname{const}} der zeitunabhängige Hamilton-Operator des ungestörten Systems ist
    • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_1} die durch die Wechselwirkung verursachte Störung beschreibt, die zeitabhängig sein kann.
Es kann nützlich sein, eine solche formale Aufspaltung des Hamiltonoperators auch dann herbeizuführen, wenn keine Wechselwirkung vorliegt.
  • Zustände sind zeitabhängig: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\psi\rangle = |\psi(t)\rangle} , ihre Dynamik wird beschrieben durch die angepasste Schrödinger-Gleichung.
  • Operatoren sind ebenfalls zeitabhängig: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat A = \hat A(t)} , ihre Dynamik ist gegeben durch die angepasste Heisenbergsche Bewegungsgleichung.
  • Nur bestimmte Rechnungen sind im Dirac-Bild einfacher durchzuführen. Als bestes Beispiel dient hier die Herleitung der zeitabhängigen Störungstheorie.

Beschreibung

Der Grundgedanke des Wechselwirkungsbildes besteht darin, die zeitliche Entwicklung des Systems, die von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_0} verursacht wird, in die zeitliche Abhängigkeit der Operatoren zu stecken, während die von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_1} verursachte Zeitabhängigkeit in die Entwicklung des Zustandes eingeht.

Dazu werden zwei Zeitentwicklungsoperatoren definiert:

  • der „normale“, mit dem – wie in Zeitentwicklungsoperator erklärt – Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H} definiert wird:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat U(t,t_0) = \hat T \left[ \exp \left( -\frac{i}{\hbar}\int_{t_0}^t \hat H(t^\prime)dt^\prime\right) \right]}
mit dem Zeitordnungsoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat T}
  • der nur von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_0} erzeugte Zeitentwicklungsoperator:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat U_0(t,t_0) = \exp \left( -\frac{i}{\hbar}\hat H_0(t-t_0) \right).}

Der Erwartungswert a des Operators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat A} muss in allen drei Bildern (Heisenberg-Bild: Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle _H} , Schrödinger-Bild: Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle _S} , Dirac) gleich sein:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = \langle \psi _{\text{S}}(t)|\hat{A}_{\text{S}}(t)|\psi _{\text{S}}(t)\rangle =\langle \psi _{\text{S}}(t)|\underbrace{\hat{U}_{0}(t,t_{0})\hat{U}_{0}^{\dagger }(t,t_{0})}_{1}\,\hat{A}_{\text{S}}(t)\,\underbrace{\hat{U}_{0}(t,t_{0})\hat{U}_{0}^{\dagger }(t,t_{0})}_{1}\,|\psi _{\text{S}}(t)\rangle }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = \langle \underbrace{\hat{U}_{0}^{\dagger }(t,t_{0})\psi _{\text{S}}(t)}_{\psi _{\text{D}}(t)}|\underbrace{\hat{U}_{0}^{\dagger }(t,t_{0})\,\hat{A}_{\text{S}}(t)\,\hat{U}_{0}(t,t_{0})}_{\hat{A}_{\text{D}}(t)}\,|\underbrace{\hat{U}_{0}^{\dagger }(t,t_{0})\psi _{\text{S}}(t)}_{\psi _{\text{D}}(t)}\rangle =\langle \psi _{\text{D}}(t)|\hat{A}_{\text{D}}(t)|\psi _{\text{D}}(t)\rangle }

Der zeitabhängige Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat A_{\rm D}(t)} ist wie im Heisenberg-Bild gegeben durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \hat A_{\rm D}(t) & = \hat U_0^{\dagger}(t,t_0) \, \hat A_{\rm S}(t) \, \hat U_0(t,t_0)\\ & = {\rm e}^{\frac{i}{\hbar}\hat H_0(t-t_0)} \, \hat A_{\rm S}(t) \, {\rm e}^{-\frac{i}{\hbar}\hat H_0(t - t_0)} \end{align}}

Der zeitabhängige Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\psi_{\rm D}(t)\rangle} kann nur indirekt – über die Reduktion des (im Schrödinger-Bild) vollständig die Dynamik beschreibenden Zustandes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\psi_{\rm S}(t)\rangle} um den von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_0} verursachten Anteil seiner Zeitentwicklung – definiert werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\psi_{\rm D}(t)\rangle=\hat U_0^{\dagger}(t,t_0)\,|\psi_{\rm S}(t)\rangle={\rm e}^{\frac{i}{\hbar}\hat H_0(t-t_0)}\,|\psi_{\rm S}(t)\rangle}

Damit lässt sich der Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_{1 \rm D}(t)} definieren:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_{1 \rm D}(t)=\hat U_0^{\dagger}(t,t_0)\,\hat H_{1 \rm S}(t)\,\hat U_0(t,t_0) ={\rm e}^{\frac{i}{\hbar}\hat H_0(t-t_0)}\,\hat H_{1 \rm S}(t)\,{\rm e}^{-\frac{i}{\hbar}\hat H_0(t-t_0)} }

Der zeitlich unabhängige Anteil des Hamiltonoperators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_0} ist im Wechselwirkungsbild identisch mit dem im Schrödinger-Bild:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_{0 \rm D}(t) = \hat H_{0 \rm S}}

Die Dynamik der Zustände wird (ähnlich dem Schrödinger-Bild) beschrieben durch die Gleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\hbar\frac{\partial}{\partial t}|\psi_{\rm D}(t)\rangle=\hat H_{1 \rm D}(t)\,|\psi_{\rm D}(t)\rangle }

Die Dynamik der Operatoren wird (wie im Heisenberg-Bild) beschrieben durch die Heisenbergsche Bewegungsgleichung, mit dem nicht zeitabhängigen Hamilton-Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_0} , der das ungestörte System beschreibt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\hbar\frac{{\rm d} \hat A_{\rm D}}{{\rm d}t}=\left[\hat A_{\rm D}(t),\hat H_0\right] +i\hbar\frac{\partial \hat A_{\rm D}}{\partial t} }

Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat H_{1 \rm S} = \hat H_{1 \rm D} = 0} geht das Dirac-Bild in das Heisenberg-Bild über.

Zum Zeitpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_0} stimmen alle drei Bilder überein:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat{A}_{\text{D}}(t_{0})=\hat{A}_{\text{H}}(t_{0})=\hat{A}_{\text{S}}(t_{0})}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\psi _{\text{D}}(t_{0})\rangle =|\psi _{\text{H}}(t_{0})\rangle =|\psi _{\text{S}}(t_{0})\rangle }

Herleitung der Bewegungsgleichungen

Zur Vorbereitung werden die zeitlichen Ableitungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat U_0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat U_0^{\dagger}} ermittelt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} &\frac{\partial }{\partial t}\hat{U}_{0}(t,t_{0})=\frac{\partial }{\partial t}\operatorname{e}^{-\frac{i}{\hbar }\hat{H}_{0}(t-t_{0})}=\operatorname{e}^{-\frac{i}{\hbar }\hat{H}_{0}(t-t_{0})}\left( -\frac{i}{\hbar }\hat{H}_{0} \right)=-\frac{i}{\hbar }\hat{U}_{0}(t,t_{0})\,\hat{H}_{0}=-\frac{i}{\hbar }\hat{H}_{0}\,\hat{U}_{0}(t,t_{0})\\ &\frac{\partial }{\partial t}\hat{U}_{0}^{\dagger }(t,t_{0})=\frac{\partial }{\partial t}\operatorname{e}^{\frac{i}{\hbar }\hat{H}_{0}(t-t_{0})}=\operatorname{e}^{\frac{i}{\hbar }\hat{H}_{0}(t-t_{0})}\left( \frac{i}{\hbar }\hat{H}_{0} \right)=\frac{i}{\hbar }\hat{U}_{0}^{\dagger }(t,t_{0})\,\hat{H}_{0}=\frac{i}{\hbar }\hat{H}_{0}\,\hat{U}_{0}^{\dagger }(t,t_{0}) \end{align}}

Bewegungsgleichung für die Zustände:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} i\hbar \frac{\partial }{\partial t}|\psi _{\text{D}}(t)\rangle &=i\hbar \frac{\partial }{\partial t}\hat{U}_{0}^{\dagger }(t,t_{0})\,|\psi _{\text{S}}(t)\rangle =\underbrace{\left( i\hbar \frac{\partial }{\partial t}\hat{U}_{0}^{\dagger }(t,t_{0}) \right)}_{\hat{U}_{0}^{\dagger }(t,t_{0})(-\hat{H}_{0})}\,|\psi _{\text{S}}(t)\rangle +\hat{U}_{0}^{\dagger }(t,t_{0})\underbrace{\left( i\hbar \frac{\partial }{\partial t}\,|\psi _{\text{S}}(t)\rangle \right)}_{(\hat{H}_{0}+\hat{H}_{1 \rm S})|\psi _{\text{S}}(t)\rangle } \\ &=\hat{U}_{0}^{\dagger }(t,t_{0})\hat{H}_{1\text{S}}(t)\,|\psi _{\text{S}}(t)\rangle =\underbrace{\hat{U}_{0}^{\dagger }(t,t_{0})\hat{H}_{1\text{S}}(t)\hat{U}_{0}(t,t_{0})}_{\hat{H}_{1 \rm D}(t)}\underbrace{\hat{U}_{0}^{\dagger }(t,t_{0})\,|\psi _{\text{S}}(t)\rangle }_{|\psi _{\text{D}}(t)\rangle }=\hat{H}_{1D}(t)|\psi _{\text{D}}(t)\rangle \end{align}}

Bewegungsgleichung für die Operatoren:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} i\hbar \frac{\text{d}\hat{A}_{\text{D}}}{\text{d}t}&=i\hbar \frac{\text{d}}{\text{d}t}\left( \hat{U}_{0}^{\dagger }\,\hat{A}_{\text{S}}\,\hat{U}_{0} \right)=\underbrace{\left( i\hbar \frac{\text{d}}{\text{d}t}\hat{U}_{0}^{\dagger }\, \right)}_{-\hat{H}_{0}\hat{U}_{0}^{\dagger }}\hat{A}_{\text{S}}\,\hat{U}_{0}+\hat{U}_{0}^{\dagger }\,\hat{A}_{\text{S}}\underbrace{\left( i\hbar \frac{\text{d}}{\text{d}t}\,\hat{U}_{0} \right)}_{\hat{U}_{0}\hat{H}_{0}}+i\hbar \underbrace{\hat{U}_{0}^{\dagger }\left( \frac{\partial }{\partial t}\hat{A}_{\text{S}} \right)\,\hat{U}_{0}}_{\frac{\partial \hat{A}_{\text{D}}}{\partial t}} \\ &=-\hat{H}_{0}\underbrace{\hat{U}_{0}^{\dagger }\,\hat{A}_{\text{S}}\,\hat{U}_{0}}_{\hat{A}_{\text{D}}}+\underbrace{\hat{U}_{0}^{\dagger }\,\hat{A}_{\text{S}}\,\hat{U}_{0}}_{\hat{A}_{\text{D}}}\hat{H}_{0}+i\hbar \frac{\partial \hat{A}_{\text{D}}}{\partial t}=\left[ \hat{A}_{\text{D}},\hat{H}_{0} \right]+i\hbar \frac{\partial \hat{A}_{\text{D}}}{\partial t} \end{align}}

Literatur

  • Nolting: Grundkurs theoretische Physik. Bd.5/1 : Quantenmechanik. Springer, Berlin
  • Cohen-Tannoudji: Quantenmechanik 1/2. de Gruyter, Berlin

Einzelnachweise

  1. Dirac On the theory of quantum mechanics, Proc. Roy. Soc. A 112, 1926, 661; er verwendete es auch in Dirac The quantum theory of the emission and absorption of radiation, Proc. Roy. Soc. A 114, 1927, 243. Historische Angaben nach der Darstellung in Charles Enz Not time to be brief. A scientific biography of Wolfgang Pauli, Oxford University Press 2002, S. 176
  2. Tomonaga On a relativistically invariant formulation of the quantum theory of wave fields, Progress of Theoretical Physics, 1, 1946, 27
  3. Dirac, Wladimir Fock, Boris Podolsky On Quantum Electrodynamics, Phys. Z. Sowjetunion, 2, 1932, 468
  4. Mehra, Milton Climbing the Mountain. The Scientific Biography of Julian Schwinger, Oxford University Press 2000, S. 14. Er verwendete sie später in seinen ersten veröffentlichten Arbeiten über Quantenfeldtheorie (angefangen mit Schwinger Quantum Electrodynamics I, Physical Review, 74, 1948, 1439)