Ähnlichkeit (Matrix)

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Ähnliche Matrix)

In dem mathematischen Teilgebiet lineare Algebra ist Ähnlichkeit eine Äquivalenzrelation auf der Klasse der quadratischen Matrizen. Ähnliche Matrizen beschreiben dieselbe lineare Selbstabbildung (Endomorphismus) bei Verwendung unterschiedlicher Basen.

Definition

Zwei -dimensionale quadratische Matrizen über dem Körper heißen zueinander ähnlich, wenn es eine reguläre Matrix gibt, sodass

oder äquivalent

gilt. Die Abbildung

heißt Ähnlichkeitsabbildung oder Ähnlichkeitstransformation. Ist eine Matrix einer Diagonalmatrix ähnlich, so heißt sie diagonalisierbar; ist sie einer oberen Dreiecksmatrix ähnlich, so heißt sie trigonalisierbar.

Beispiel

Die beiden reellen Matrizen

  und  

sind zueinander ähnlich, denn mit der regulären Matrix

gilt

.

Die Matrix ist dabei nicht eindeutig bestimmt, denn auch jedes Vielfache mit erfüllt diese Identität.

Eigenschaften

Kenngrößen

Zwei zueinander ähnliche Matrizen haben das gleiche charakteristische Polynom, denn es gilt mit der Kommutativität der Einheitsmatrix , dem Determinantenproduktsatz und der Determinante der Inversen

Daher haben zueinander ähnliche Matrizen

Außerdem haben zueinander ähnliche Matrizen

Charakterisierung

Zwei komplexe Matrizen sind genau dann zueinander ähnlich, wenn sie (bis auf die Reihenfolge der Jordanblöcke) die gleiche jordansche Normalform haben.

Allgemein sind nach dem Lemma von Frobenius zwei Matrizen und genau dann zueinander ähnlich, wenn sie die gleiche Frobenius-Normalform besitzen. Das ist genau dann der Fall, wenn ihre charakteristischen Matrizen und die gleiche Smith-Normalform aufweisen.

Äquivalenzklassen

Die Ähnlichkeit von Matrizen ist eine Äquivalenzrelation, also reflexiv, symmetrisch und transitiv. Man schreibt

,

wenn und zueinander ähnlich sind, und notiert die zu einer Matrix zugehörige Äquivalenzklasse durch

.

Zum Beispiel besteht die Äquivalenzklasse der zu einem Vielfachen mit der Einheitsmatrix ähnlichen Matrizen aus genau einem Element , denn für alle regulären Matrizen .

Die Ähnlichkeit von Matrizen ist ein Spezialfall der allgemeiner definierten Äquivalenz auf der Klasse der -Matrizen.

Berechnung der Transformationsmatrix

Vorgehensweise

Sind zwei zueinander ähnliche Matrizen gegeben, so lässt sich eine Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} , mit der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B = S^{-1} A S} gilt, folgendermaßen ermitteln. Zunächst werden die beiden Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} in die gleiche Frobenius-Normalform (oder, falls möglich, die gleiche Jordan-Normalform) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F \in K^{n \times n}} überführt. Sind die beiden hierzu verwendeten Ähnlichkeitstransformationen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F = G^{-1} A G}   und   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F = H^{-1} B H}

mit regulären Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G, H \in K^{n \times n}} , so folgt daraus durch Gleichsetzen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B = H G^{-1} A G H^{-1} = \left(G H^{-1}\right)^{-1} A \left(G H^{-1}\right)} .

Die gesuchte Transformationsmatrix ist demnach

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S = G H^{-1}} .

Beispiel

Seien die beiden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2 \times 2)} -Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} wie im obigen Beispiel gegeben. Die charakteristischen Polynome der beiden Matrizen ergeben sich zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi_A(\lambda) = \det(\lambda I - A) = (\lambda+3)\lambda + 2 = (\lambda+2)(\lambda+1)}

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi_B(\lambda) = \det(\lambda I - B) = (\lambda-2)(\lambda+5) + 12 = (\lambda+2)(\lambda+1)} .

Die beiden charakteristischen Polynome stimmen also überein, wobei die Eigenwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda_1 = -2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda_2 = -1} sind. Weil das charakteristische Polynom vollständig in reelle Linearfaktoren zerfällt, lässt sich zu beiden Matrizen die gleiche Jordan-Normalform aufstellen, die in diesem Fall die Diagonalgestalt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}}

hat. Die Transformationsmatrizen in die Jordan-Normalform haben dabei die Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G = ( v_1 \mid v_2 )} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H = ( w_1 \mid w_2 )} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_1, w_1} jeweils Eigenvektoren zum Eigenwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda_1 = -2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_2, w_2} jeweils Eigenvektoren zum Eigenwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda_2 = -1} sind. Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} ergeben sich zwei Eigenvektoren durch Lösung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (-2I - A) v_1 = 0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (-I - A) v_2 = 0} als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}}   und   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}} .

Entsprechend ergeben sich für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} zwei Eigenvektoren durch Lösung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2I + B) w_1 = 0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (I + B) w_2 = 0} als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_1 = \begin{pmatrix} 3 \\ -4 \end{pmatrix}}   und   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}} .

Die beiden Transformationsmatrizen in die Jordan-Normalform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} sind demnach

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}}   und   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H = \begin{pmatrix} 3 & 1 \\ -4 & -1 \end{pmatrix}} ,

und die gesuchte Ähnlichkeitstransformationsmatrix ist damit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S = G H^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & -1 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} } .

Siehe auch

Literatur

  • Gerd Fischer: Lineare Algebra. 18. Auflage. Springer Spektrum, 2014, ISBN 978-3-8348-0996-4.