Ungleichung vom arithmetischen und geometrischen Mittel
In der Mathematik besagt die Ungleichung vom arithmetischen und geometrischen Mittel, dass das arithmetische Mittel von n Zahlen mindestens so groß wie das geometrische Mittel ist. Für war diese Ungleichung bereits Euklid bekannt; der erste Beweis für einen beliebigen Wert von wurde 1729 von Colin Maclaurin veröffentlicht.[1]
Formale Formulierung
Die Ungleichung vom arithmetischen und geometrischen Mittel lautet für nichtnegative Zahlen
Die linke Seite der Ungleichung ist das geometrische Mittel und die rechte Seite das arithmetische Mittel. Es gilt genau dann Gleichheit, wenn gilt.
Geometrische Interpretation
Ein Rechteck mit den Seiten und hat den Gesamtumfang . Ein Quadrat mit dem gleichen Flächeninhalt hat den Umfang . Für besagt die Ungleichung
also, dass unter allen Rechtecken mit gleichem Inhalt der Umfang mindestens
beträgt, wobei das Quadrat diesen geringsten Umfang hat.
Im Falle sagt die Ungleichung aus, dass unter allen Quadern mit gleichem Volumen der Würfel die kleinste Kantenlänge insgesamt hat. Die allgemeine Ungleichung erweitert diese Idee auf Dimensionen.
Trägt man für die Längen und hintereinander auf einer Geraden ab und errichtet über den Enden der Strecke mit Länge einen Halbkreis, so entspricht der Radius von jenem dem arithmetischen Mittel. Das geometrische Mittel ist dann die Länge des Lotes eines solchen Punktes auf dem Halbkreis auf die Strecke mit Länge , für den das Lot durch den Übergangspunkt der Strecken und geht. Letzterer Zusammenhang folgt aus dem Satz des Thales und dem Höhensatz.
Beweise
Für den Fall, dass ein gleich Null ist, ist das geometrische Mittel Null und die Ungleichung ist offensichtlich erfüllt; in den folgenden Beweisen kann daher angenommen werden.
Beweis aus der jensenschen Ungleichung
Die Ungleichung vom arithmetischen und geometrischen Mittel lässt sich beispielsweise aus der jensenschen Ungleichung beweisen: die Logarithmusfunktion ist konkav, daher gilt
für positive mit .
Durch Anwendung der Exponentialfunktion auf beide Seiten folgt
- .
Für ergibt das genau die Ungleichung vom arithmetischen und geometrischen Mittel.
Beweis von Polya
Von George Polya stammt ein Beweis, der lediglich die Beziehung der Exponentialfunktion voraussetzt. Für gilt dann
- .
Multipliziert man diese Ungleichungen für , so erhält man
- ,
also
und somit
- .
Induktive Beweise
Der Beweis aus der jensenschen Ungleichung und der Polya-Beweis sind zwar sehr leicht verständlich, haben aber den Nachteil, dass Vorwissen über die Logarithmusfunktion beziehungsweise der Exponentialfunktion benötigt wird. Für die Untersuchung der bei der Definition der Exponentialfunktion verwendeten Folge
kann aber die Ungleichung vom arithmetischen und geometrischen Mittel hilfreich sein. Methodisch sind daher oft induktive Beweise zweckmäßiger; diese sind für die Ungleichung vom arithmetischen und geometrischen Mittel aber relativ schwierig.
Beweis mit Vorwärts-Rückwärts-Induktion
Ein induktiver Beweis der Ungleichung vom arithmetischen und geometrischen Mittel kann mit einer so genannten »Vorwärts-Rückwärts-Induktion« geführt werden. Der Vorwärtsschritt leitet aus der Gültigkeit der Ungleichung für diejenige für ab und gehorcht dem Schema der gewöhnlichen vollständigen Induktion. Im sog. »Rückwärtsschritt« wird aus der Gültigkeit der Ungleichung für die Gültigkeit für hergeleitet.
Herleitung |
Fall 2:
Sind sie verschieden, dann ist
und
Fall A: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \ge 1}
ist eine Zweierpotenz
für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \ge 1} Elemente, dann gilt
für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2 n}
Elemente.
Die Gleichheit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{z}_\mathrm{arithm} = \bar{z}_\mathrm{geom} } erfordert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{arithm} = \bar{x}_\mathrm{geom} } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{y}_\mathrm{arithm} = \bar{y}_\mathrm{geom} ,} also gleiche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i = \bar{x}_\mathrm{geom} } und gleiche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_i = \bar{y}_\mathrm{geom} ,} sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{geom} = \bar{y}_\mathrm{geom} .} Zusammengenommen ergibt das: alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z_i } sind gleich. Fall B: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n }
ist keine Zweierpotenz
Somit folgt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n < 2^k = m} :
woraus
und
und
folgt. |
Dieser Beweis findet sich bereits bei Augustin Louis Cauchy.[2]
Beweis mittels Hilfssatz
Ein anderer Beweis der Ungleichung vom arithmetischen und geometrischen Mittel ergibt sich aus dem Hilfssatz, dass für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_i>0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \prod_{i=1}^n u_i =1} folgt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum_{i=1}^n u_i \geq n} . Dieser Beweis stammt von G. Ehlers.[3] Der Hilfssatz kann beispielsweise mit vollständiger Induktion bewiesen werden. Betrachtet man das Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle p:=\prod_{i=1}^{n} x_i} und setzt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_i:=\tfrac{x_i}{\sqrt[n]{p}}} , so erfüllen die so definierten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle u_i\!} nämlich die Voraussetzung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \prod_{i=1}^n u_i =1} des Hilfssatzes. Aus dem Hilfssatz folgt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\leq \sum_{i=1}^n u_i = \sum_{i=1}^n \frac{x_i}{\sqrt[n]{p}}} ,
also
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt[n]{p} \leq \frac{1}{n}\sum_{i=1}^n x_i } .
Einsetzen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle p=\prod_{i=1}^{n} x_i} liefert dann die Ungleichung vom arithmetischen und geometrischen Mittel.
Beweis aus der Bernoulli-Ungleichung
Ein direkter induktiver Beweis ist mit Hilfe der bernoullischen Ungleichung möglich: Sei o. B. d. A. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{n+1}} das maximale Element von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1,\dots,x_n,x_{n+1}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{arithm}} das arithmetische Mittel von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1,\dots,x_n} . Dann gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{n+1}-\bar{x}_\mathrm{arithm}\geq 0} , und aus der bernoullischen Ungleichung folgt, wenn man die Summanden mit den Indizes 1 bis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} von dem Summanden mit dem Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n+1} „trennt“, dass
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{x_1+\dots+x_{n+1}}{(n+1)\bar{x}_\mathrm{arithm}}\right)^{n+1}=\left(1+\frac{x_{n+1}-\bar{x}_\mathrm{arithm}}{(n+1)\bar{x}_\mathrm{arithm}}\right)^{n+1}\geq 1+\frac{x_{n+1}-\bar{x}_\mathrm{arithm}}{\bar{x}_\mathrm{arithm}}=\frac{x_{n+1}}{\bar{x}_\mathrm{arithm}}} .
Multiplikation mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{arithm}^{n+1}} liefert
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\frac{x_1+\dots+x_{n+1}}{n+1}\right)^{n+1}\geq \bar{x}_\mathrm{arithm}^{n+1}\frac{x_{n+1}}{\bar{x}_\mathrm{arithm}}=\bar{x}_\mathrm{arithm}^nx_{n+1}\geq x_1\cdots x_n x_{n+1}} ,
wobei die letzte Ungleichung nach Induktionsvoraussetzung gilt. Das Ziehen der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (n+1)} -ten Wurzel beendet den Induktionsbeweis.
Dieser Beweis findet sich beispielsweise im Lehrbuch der Analysis von H. Heuser, Teil 1, Kapitel 12.2.
Beweis aus der Umordnungs-Ungleichung
Ein nicht-induktiver Beweis der Ungleichung vom arithmetischen und geometrischen Mittel, der ohne Logarithmusfunktion auskommt, lässt sich mit Hilfe der Umordnungs-Ungleichung durchführen. Aus der Umordnungs-Ungleichung folgt nämlich, dass für positive Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_1, \dots, a_n} und jede beliebige Permutation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_{\sigma (1)}, \dots ,a_{\sigma (n)}} die Beziehung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{a_{\sigma (1)}}{a_1}+\cdots +\frac{a_{\sigma (n)}}{a_n} \geq n}
gelten muss. Setzt man speziell
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_1 = \frac{x_1}{\bar{x}_\mathrm{geom}}, a_2 = \frac{x_1 x_2}{\bar{x}_\mathrm{geom}^2}, \dots, a_n = \frac{x_1 x_2 \cdots x_n}{\bar{x}_\mathrm{geom}^n}=1, }
so folgt also
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \leq \frac{a_2}{a_1}+ \frac{a_3}{a_2} + \dots +\frac{a_n}{a_{n-1}} +\frac{a_1}{a_n} = \frac{x_{2}}{\bar{x}_\mathrm{geom}} + \frac{x_{3}}{\bar{x}_\mathrm{geom}} + \cdots + \frac{x_{n}}{\bar{x}_\mathrm{geom}} + \frac{x_{1}}{\bar{x}_\mathrm{geom}},}
woraus unmittelbar die Ungleichung vom arithmetischen und geometrischen Mittel folgt.
Sonderfälle
Zahl und ihr Kehrwert
Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = 2} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 = x} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2= \tfrac{1}{x}} ergibt sich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{x \cdot \tfrac{1}{x}} \leq \tfrac{1}{2}\left(x + \tfrac{1}{x}\right)}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 \leq \tfrac{1}{2}\left(x + \tfrac{1}{x}\right)}
- und damit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2 \leq x + \tfrac{1}{x}}
Diese Aussage lässt sich direkt beweisen: Die Multiplikation mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} ergibt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x + \frac{1}{x} \geq 2 \Leftrightarrow x^2 + 1 \geq 2x \Leftrightarrow x^2 - 2x + 1 \geq 0 \Leftrightarrow (x-1)^2 \geq 0,}
was offensichtlich richtig ist.
Verallgemeinerungen
Ungleichung vom gewichteten arithmetischen und geometrischen Mittel
Für ein gegebenes positives Gewichtstupel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{w} = (w_1,\dots, w_n)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_i > 0} und Summe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle w:={\sum_{i=1}^n w_i}} wird mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{arithm} = \frac{\sum_{i=1}^n w_i \cdot x_i }{w}}
das gewichtete arithmetische Mittel und mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{geom} = \sqrt[w]{\prod_{i=1}^n x_i^{w_i}}} ,
das gewichtete geometrische Mittel bezeichnet. Auch für diese gewichteten Mittel gilt die die Ungleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{geom} \le \bar{x}_\mathrm{arithm}} .
Der Beweis dafür folgt direkt aus obigem Beweis mit der jensenschen Ungleichung.
Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = 2} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_1 = \tfrac1p} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_2 = \tfrac1q} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w = \tfrac1p + \tfrac1q = 1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 = a^p} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 = b^q} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a, b \ge 0} erhält man die youngsche Ungleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ab \le \frac1p a^p + \frac 1q b^q}
Ungleichung vom harmonischen und geometrischen Mittel
Fordert man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i} echt größer Null und ersetzt in der Ungleichung vom arithmetischen und geometrischen Mittel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i} durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1/x_i} , so erhält man die Ungleichung vom harmonischen und geometrischen Mittel:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{n}{\sum_{i=1}^n \frac{1}{x_i}} \leq \sqrt[n]{\prod_{i=1}^n{x_i}}} .
Diese Ungleichung gilt ebenfalls für die gewichteten Mittel:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{w}{\sum_{i=1}^n \frac{w_i}{x_i}} \leq \sqrt[w]{\prod_{i=1}^n x_i^{w_i} }} .
Ungleichung der verallgemeinerten Mittel
Als Hölder-Mittel mit Exponent Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} bezeichnet man den Ausdruck
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}(k) = \sqrt[k]{\frac{1}{n}\sum_{i=1}^n{x_i^k}}} .
- Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k=1\!} erhält man das arithmetische Mittel,
- Der Grenzwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k\to 0} ergibt das geometrische Mittel,
- Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k=-1} erhält man das harmonische Mittel.
Allgemein gilt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\infty\le s \le t \le \infty} die verallgemeinerte Mittelwertungleichung:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x} (s)\leq \bar{x} (t)}
Diese Ungleichung lässt sich z. B. beweisen, indem man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_i:=x_i^s, v_i:=1\;} setzt und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_i\;} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i\;} in die Hölder-Ungleichung mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=t/s\;} einsetzt, oder indem man die jensensche Ungleichung für die konvexe Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)=x^{t/s}\;} auf die Werte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i^s} anwendet.
Auch diese Ungleichung gilt ebenfalls für die gewichteten Mittel: Sei
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}(\mathbf{w},k) = \sqrt[k]{\frac{1}{w}\sum_{i=1}^n{w_i x_i^k}}}
das mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{w}} gewichtete Mittel mit Exponent Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} der Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i} , so gilt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -\infty\le s \le t \le \infty} die Ungleichung:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}(\mathbf{w},s)\leq \bar{x}(\mathbf{w},t)} .
Diese Ungleichung lässt sich ebenfalls aus der Hölder-Ungleichung beweisen, indem man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_i:=w_i^{s/t} x_i^s, v_i:=w_i^{1-s/t}\;} sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=t/s\;} setzt, oder ebenfalls, indem man die jensensche Ungleichung für die konvexe Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)=x^{t/s}\;} auf die Werte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i^s} anwendet.
Übertragen auf Integrale über den Maßraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega, \mathcal A, \mu)} mit einem endlichen Maß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(\Omega)<\infty} nimmt die Ungleichung der verallgemeinerten Mittel die Form
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt[s]{\frac{1}{\mu(\Omega)}\int_\Omega |f(x)|^s\,d\mu(x)}\leq \sqrt[t]{\frac{1}{\mu(\Omega)}\int_\Omega |f(x)|^t\,d\mu(x)}}
an; insbesondere folgt daraus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^t(\Omega, \mathcal A, \mu)\subseteq L^s(\Omega, \mathcal A, \mu)} für diese Lp-Räume.
Siehe auch
- Eine andere Verallgemeinerung der Ungleichung vom arithmetischen und geometrischen Mittel ist die Muirhead-Ungleichung.
- Aus der Ungleichung vom arithmetischen und geometrischen Mittel lässt sich die Cauchy-Schwarz-Ungleichung ableiten.
Einzelnachweise
- ↑ Paul J. Nahin: When Least is Best. Princeton University Press, Princeton N.J. 2004, ISBN 0-691-07078-4, S. 331–333: Appendix A. The AM-GM Inequality.
- ↑ Cauchy, Augustin-Louis. Analyse algébrique. Der Beweis der Ungleichung vom arithmetischen und geometrischen Mittel ist auf Seite 457 ff. Eine Titulierung à la Vorwärts-Rückwärts-Induktion findet sich in dem Artikel nicht.
- ↑ W.D. Hayes: Colloquium on linear equations. Office of Naval Research Technical Report ONRL-35-54 (1954) (PDF; 2,0 MB)
Literatur
- Pavel P. Korowkin: Ungleichungen (= Hochschulbücher für Mathematik. Kleine Ergänzungsreihe. 4 = Mathematische Schülerbücherei. 9, ISSN 0076-5449). 6. Auflage. Deutscher Verlag der Wissenschaften, Berlin 1970.