Alephformel
Alephformeln sind mathematische Formeln der Kardinalzahlarithmetik und als solche Lehrsätze des mathematischen Teilgebiets der Mengenlehre. Bedeutende Alephformeln sind nicht zuletzt mit den Namen der Mathematiker Gerhard Hessenberg, Felix Hausdorff und Felix Bernstein verbunden.[1][2][3] [4][5][6][7][8]
Der Terminus Alephformel(n) wird vor allem von Arnold Oberschelp und Dieter Klaua in ihren jeweiligen Monographien Allgemeine Mengenlehre benutzt, wobei Oberschelp mit diesem Terminus explizit die von Hessenberg im Jahre 1906 vorgelegte Formel (s. u.) meint.[1][7]
Hessenbergs Formel
Die von Hessenberg im Jahre 1906 vorgelegte Formel – die auch als Satz von Hessenberg zitiert wird – ist von grundlegender Bedeutung für die gesamte Kardinalzahlarithmetik. Sie lässt sich folgendermaßen angeben:[9][10][11][12]
- Für jede Ordinalzahl gilt
- .
Folgerungen
Die hessenbergsche Formel zieht eine Reihe von weiteren Alephformeln nach sich.
- II
Unter Anwendung der hessenbergschen Gleichung ergibt sich auch die von Felix Bernstein vorgelegte bernsteinsche Formel:[18][19][20]
- Für je zwei Ordinalzahlen und mit gilt
- .
- III
Felix Bernstein hat eine weitere Alephformel geliefert, die bei Klaua auch als bernsteinscher Alephsatz bezeichnet wird und die auf Bernsteins Publikation aus dem Jahre 1905 zurückgeht:[21][22]
- Für jede Ordinalzahl und alle natürlichen Zahlen gilt
- .
Formel von Hausdorff
Weitergehend als der bernsteinsche Alephsatz ist ein Satz, der von Felix Hausdorff im Jahre 1904 bewiesen wurde und in dem er die bekannte hausdorffsche Rekursionsformel (englisch Hausdorff recursion formula) formuliert:[23][21][24][22]
- Für je zwei Ordinalzahlen und und alle natürlichen Zahlen gilt
- .
- Insbesondere gilt für jede Ordinalzahl , die keine Limeszahl ist, und jede Ordinalzahl die Formel
- .
Verwandte Formeln
Jenseits der oben dargestellten klassischen Alephformeln gibt es eine Anzahl von verwandten Formeln, welche die Alephs in einen weiteren Kontext stellen.
Formel von König
Im Jahre 1904 bewies Julius König eine Formel, welche die bekannte Ungleichung verschärft und die zugleich für die Alephs eine obere Abschätzung mittels Konfinalitäten liefert. Diese Formel, die auf dem Satz von König beruht, besagt nämlich:[25][26][27]
- Für jede Ordinalzahl gilt die Ungleichung
- .
Bezug zur Kontinuumshypothese
Auch die von Hausdorff im Jahre 1908 formulierte Verallgemeinerte Kontinuumshypothese (GCH) lässt sich als Alephformel verstehen. Man spricht daher auch von der Alephhypothese (AH). Diese besagt nämlich:[28][29][26]
- Für jede Ordinalzahl gilt die Gleichung
- .
Hierzu hat man die folgenden Formeln:[30]
- I
- Unter Annahme der Verallgemeinerten Kontinuumshypothese (GCH) gilt für Ordinalzahlen und im Falle, dass regulär ist:
- , falls
- , falls
- II
- Unter Annahme der Verallgemeinerten Kontinuumshypothese (GCH) gilt für Ordinalzahlen und im Falle, dass singulär ist:
- , falls
- , falls
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \aleph_{\alpha}^{\aleph_\beta} \, = \, \aleph_{\beta + 1}} , falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \aleph_{\beta} \geq \aleph_{\alpha} }
Erläuterungen und Anmerkungen
- Die Alephs sind als Ordinalzahlen dadurch gekennzeichnet, dass sie unendlich und – in Bezug auf die auf der Ordinalzahlenklasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle On} gegebene Wohlordnungsrelation – mit keiner echt kleineren Ordinalzahl gleichmächtig sind.[31]
- Dieter Klaua definiert in seiner Allgemeine Mengenlehre nicht explizit, was er unter Alephformeln versteht. Aus dem Kontext wird jedoch klar, was gemeint ist.
- Die Formel von Hessenberg umfasst (offenbar) den schon von Georg Cantor mit Hilfe seiner Paarungsfunktion bewiesenen Satz, demzufolge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\N}_0 \times {\N}_0 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\N}_0} gleichmächtige Mengen sind.
- Die Formel von Hessenberg wurde im Jahre 1908 von Philip Jourdain wiederentdeckt.[32]
- Der Terminus Alephhypothese geht auf Felix Hausdorff und dessen Arbeit aus dem Jahre 1908 zurück. Hausdorff benutzt dort sogar den Terminus Cantorsche Alefhypothese.[33]
- Einige Autoren – wie Walter Felscher in Naive Mengen und abstrakte Zahlen III – unterscheiden zwischen der Verallgemeinerten Kontinuumshypothese (GCH) und der Alephhypothese (AH).[34] Laut Felscher gilt dabei: „In einer Mengenlehre mit Fundierungsaxiom sind (GCH) und (AH) äquivalent; in jedem Falle folgt aus (GCH) auch (AH).“[35] Wie Ulrich Felgner in 1971 zeigte, sind die Verallgemeinerte Kontinuumshypothese (GCH) und die Alephhypothese (AH) in einer Mengenlehre ohne Auswahlaxiom und ohne Fundierungsaxiom nicht miteinander äquivalent.[36]
Siehe auch
Literatur
- Felix Bernstein: Untersuchungen aus der Mengenlehre. In: Mathematische Annalen. Band 61, 1905, S. 117–155 (MR1511337).
- Heinz-Dieter Ebbinghaus: Einführung in die Mengenlehre (= Hochschultaschenbuch. Band 141). 4. Auflage. Spektrum Akademischer Verlag, Heidelberg, Berlin 2003, ISBN 3-8274-1411-3.
- Walter Felscher: Naive Mengen und abstrakte Zahlen III. Transfinite Methoden. Bibliographisches Institut, Mannheim, Wien, Zürich 1979, ISBN 3-411-01553-5 (MR0536486).
- Felix Hausdorff: Der Potenzbegriff in der Mengenlehre. In: Jahresbericht der Deutschen Mathematiker-Vereinigung. Band 13, 1904, S. 569–571.
- Felix Hausdorff: Grundzüge einer Theorie der geordneten Mengen. In: Mathematische Annalen. Band 65, 1908, S. 435–505.
- Felix Hausdorff: Grundzüge der Mengenlehre. Reprinted, New York, 1965. Chelsea Publishing Company, New York, N. Y. 1965.
- Gerhard Hessenberg: Grundbegriffe der Mengenlehre. In: Abhandlungen der Friesschen Schule, Neue Folge. Band 1. Vandenhoeck und Ruprecht, Göttingen 1906, S. 478–706.
- Karel Hrbacek, Thomas Jech: Introduction to Set Theory (= Monographs and Textbooks in Pure and Applied Mathematics. Band 220). 3. Auflage. Marcel Dekker, Inc., New York, Basel 1999, ISBN 0-8247-7915-0 (MR1697766).
- Philip E. B. Jourdain: The multiplication of Alephs. In: Mathematische Annalen. Band 65, 1908, S. 506–512 (MR1511479).
- Erich Kamke: Mengenlehre (= Sammlung Göschen. 999/999a). 7. Auflage. Walter de Gruyter, Berlin, New York 1971.
- Dieter Klaua: Allgemeine Mengenlehre. Ein Fundament der Mathematik (= Mathematische Lehrbücher und Monographien, I. Abteilung, Mathematische Lehrbücher. Band X). Akademie-Verlag, Berlin 1964 (MR0175791).
- J. König: Zum Kontinuum-Problem. In: Mathematische Annalen. Band 60, 1905, S. 177–180 (MR1511296).
- J. König: Berichtigung. In: Mathematische Annalen. Band 60, 1905, S. 462 (MR1511318).
- Kazimierz Kuratowski, Andrzej Mostowski: Set Theory. With an Introduction to Descriptive Set Theory. Translated from the 1966 Polish original (= Studies in Logic and the Foundations of Mathematics. Band 86). 2. Auflage. North-Holland Publishing Company, Amsterdam, New York, Oxford 1976 (MR0485384).
- Azriel Lévy: Basic Set Theory (= Perspectives in Mathematical Logic). Springer-Verlag, Berlin, Heidelberg, New York 1979, ISBN 3-540-08417-7 (MR0533962).
- Arnold Oberschelp: Allgemeine Mengenlehre. BI Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich 1994, ISBN 3-411-17271-1 (MR0536486).
- Wacław Sierpiński: Cardinal and Ordinal Numbers. Panstwowe Wydawnictwo Naukowe, Warschau 1958 (MR0095787).
- Alfred Tarski: Sur quelques théorèmes sur les alephs. In: Fundamenta Mathematicae. Band 7, 1925, S. 1–14.
Einzelnachweise
- ↑ a b Dieter Klaua: Allgemeine Mengenlehre. 1964, S. 507 ff.
- ↑ Heinz-Dieter Ebbinghaus: Einführung in die Mengenlehre. 2003, S. 127 ff.
- ↑ Walter Felscher: Naive Mengen und abstrakte Zahlen III. 1979, S. 107 ff.
- ↑ Erich Kamke: Mengenlehre. 1971, S. 176 ff.
- ↑ Kuratowski/Mostowski: Set Theory. 1976, S. 267 ff.
- ↑ Azriel Lévy: Basic Set Theory. 1979, S. 92 ff.
- ↑ a b Arnold Oberschelp: Allgemeine Mengenlehre. 1994, S. 237 ff.
- ↑ Wacław Sierpiński: Cardinal and Ordinal Numbers. 1958, S. 389 ff.
- ↑ Ebbinghaus, op. cit., S. 127
- ↑ Kamke, op. cit., S. 176
- ↑ Klaua, op. cit., S. 507
- ↑ Lévy, op. cit., S. 94.
- ↑ Klaua, op. cit., S. 509
- ↑ Kamke, op. cit., S. 177.
- ↑ Lévy, op. cit., S. 95.
- ↑ Oberschelp, op. cit., S. 239
- ↑ Sierpiński, op. cit., S. 395.
- ↑ Klaua, op. cit., S. 510
- ↑ Felscher, op. cit., S. 109.
- ↑ Oberschelp, op. cit., S. 241.
- ↑ a b Klaua, op. cit., S. 512
- ↑ a b Sierpiński, op. cit., S. 402.
- ↑ Felix Hausdorff: Der Potenzbegriff in der Mengenlehre. Jahresber. Dtsch. Math.-Ver. 13, S. 570
- ↑ Lévy, op. cit., S. 187.
- ↑ Oberschelp, op. cit., S. 246.
- ↑ a b Hrbacek/Jech: Introduction to Set Theory. 1999, S. 165.
- ↑ Obwohl hier die Jahreszahl 1904 genannt ist, erfolgte die Veröffentlichung erst in den Mathematische Annalen des Jahres 1905.
- ↑ Klaua, op. cit., S. 500
- ↑ Oberschelp, op. cit., S. 241–242.
- ↑ Hrbacek/Jech, op. cit., S. 166–167.
- ↑ Felscher, op. cit., S. 107.
- ↑ Lévy, op. cit., S. 97.
- ↑ Felix Hausdorff: Grundzüge einer Theorie der geordneten Mengen. Math. Ann. 65, S. 494
- ↑ Felscher, op. cit., S. 173–175.
- ↑ Felscher, op. cit., S. 174.
- ↑ Oberschelp, op. cit., S. 242.