Aussteuerung (Mess-Systeme)

aus Wikipedia, der freien Enzyklopädie

Als Aussteuerung (auch: Pegelung) von Messkanälen bezeichnet man bei Mess-Systemen die Einstellung der maximal erwarteten Amplitude (peak-Wert) des zu messenden Datenstroms.

Grundlagen

Eine korrekte Aussteuerung ist zur Erlangung eines aussagekräftigen Messergebnisses von elementarer Bedeutung. Eine Übersteuerung eines Kanals bedeutet, dass das Signal höher ist als das Mess-System verarbeiten kann, und führt zu einem falschen Messergebnis. Eine Untersteuerung führt zu einer mit dem Grad der Untersteuerung abnehmenden Genauigkeit (höheres Quantisierungsrauschen), verbunden mit einem ebenfalls abnehmenden Dynamikumfang. Beide Arten falscher Aussteuerung sind also zu vermeiden, jedoch führt nur die Übersteuerung zu einem Ergebnis bar jeder Aussage, während die untersteuerte Messung noch einen, mehr oder weniger großen, Nutzwert erfüllt.

Erläuterungen

Auswirkungen von fehlerhafter Aussteuerung

Übersteuerung

In diesem Fall wird die Aussteuerung zu niedrig gesetzt, der Messkanal ist übersteuert.

Treten z. B. in dem Messsignal Amplituden von bis zu 1 Pa auf, müsste zur korrekten Aussteuerung mindestens 94 dB gewählt werden. Bei einer Aussteuerung von 88 dB (das entspricht 1–2 Aussteuerungs-Stufen bei einem typischen Messsystem) ist der Kanal um 6 dB übersteuert.

Ergebnis: Alle Amplitudenwerte, die bei 0,5 Pa oder darüber (genauer 0,50238 Pa oder darüber) liegen, werden (unabhängig von deren tatsächlichem Wert) auf 0,5 gesetzt (clipping), denn das Messsystem erhält eine Messgröße, die nicht mehr darstellbar ist, und ersetzt diese daher einfach durch die größtmögliche. Im Datenfile werden also lauter '11111111'en abgelegt. Dies entspricht einem horizontalen, konstanten Signal, d. h. einem Gleichstromsignal. Korrekt wäre dagegen ein Messsignal, das sich als Überlagerung (Superposition) der verschiedenen Frequenzen ergibt (Fourier-Prinzip). In einem konstanten Signal (Gleichstrom) ist dagegen keine Frequenzinformation mehr enthalten; das Campbell eines Gleichstromsignals entspricht einer uni-Farbfläche. (Achtung: Der Gesamtpegel, der sich rechnerisch ergibt, muss dabei nicht zwingend deutlich abweichen – er tut es nur wenn die Übersteuerung sehr massiv war.)

Meist wird nun das Signal ja nicht die ganze Messzeit über übersteuert sein, sondern nur ab und zu. In diesem Fall erhält man ein Zeitsignal, das zu diesen Zeitabschnitten Gleichstromverlauf annimmt. Man erhält also rote Streifen im Campbell, die durch die gesamte Frequenzachse verlaufen (wenn Frequenzachse auf der Hochachse gezeichnet wird, sind dies also vertikale Streifen). Zusätzlich ergeben sich durch die harten Knicke des Signalverlaufs am Übergangspunkt zur Übersteuerung und von der Übersteuerung künstlich breitbandige (überwiegend hochfrequente) Störungen, die das Campbell-Diagramm im Bereich der FFT-Blocklänge um jeden einzelnen dieser Vorgänge verfälschen. Mit anderen Worten, hier werden Frequenzen im Mess-Signal erzeugt (und im Campbell angezeigt), die es (so) nicht gibt. Treten die Übersteuerungen nur kurzzeitig und „knapp“ auf, so ist dies im Pegelverlauf gar nicht sichtbar und selbst im Campbell nicht eindeutig als Übersteuerung zu identifizieren. Es ist also zwingend notwendig, bereits bei der Messung sicherzustellen, dass keine Übersteuerung vorliegt.

Untersteuerung

In diesem Fall hat man die Pegelung zu hoch gesetzt, also z. B. auf 100 dB (eine Stufe zu hoch). Wir nehmen wieder an, dass im Messsignal Amplitudenwerte von bis zu 1 Pa auftreten. Die Pegelung dagegen kann Werte bis 2 Pa aufnehmen. Das heißt, 100000000 entspricht 2 Pa, es treten aber nur Werte von < 1 Pa auf. Ergebnis: Das oberste Bit jedes Datenwortes (also jedes abgelegten Amplitudenwertes) bleiben immer auf „0“ stehen, es transportiert keine Information. Dies hat zwei Auswirkungen:

  • Der kleinste noch darzustellende Wert (00000001) entspricht nun 2^-6 Pa. Dieser Wert liegt aber gerade einmal 36,1 dB unter dem maximal auftretenden Amplitudenwert (Dynamikbereich). Zwar ist die Wortlänge bei heutigen Mess-Systemen höher als 8 bit (mind. 16 bit), aber eine Unterausteuerung liegt in der Praxis meist auch im Bereich von −20 dB oder sogar mehr. Eine „Unteraussteuerung“ von 6 dB wäre in der Praxis eher als überaus optimale Aussteuerung zu bezeichnen. Dabei sollte man immer bedenken, dass das Mess-Signal ein Summensignal verschiedener Frequenzen ist, und erst durch die FFT daraus die einzelnen Frequenzanteile gewonnen werden können. Von daher ist bei der Bewertung, ob ein S/N Abstand ausreicht, nicht der Gesamtpegel zu betrachten, sondern der Pegel der Schmalbänder in der FFT, und zwar im jeweiligen FFT-Block, in dem diese Frequenz den geringsten Pegel besitzt.
  • Das zweite Problem ergibt sich daraus, dass durch die höhere Pegelung ja auch ein höheres Quantisierungsrauschen auftritt. Es entsteht dadurch, dass bei einer digitalen Darstellung einer analogen Größe (z. B. Spannung, die aus einem Mikrophon kommt), nur eine endliche Anzahl verschiedener Zahlenwerte „ausgewählt“ werden kann. Mit anderen Worten, jeder gemessene Zeitsignalwert muss bei digitaler Darstellung mehr oder weniger stark gerundet werden.
Beispiel
  • Wieder 8 bit Wortlänge, Pegelung 142 dB. Dann entspricht das oberste Bit des Bytes 2^7 Pa und das unterste 1 Pa. d. h. binär 1 = dezimal 1.
  • Misst das Messsystem nun einen Wert von 1,51 Pa, so kann aufgrund der hohen Pegelung nur ein Wert von 2,0 Pa abgelegt werden (Binär 00000010), denn der kleinste darstellbare Wert (und somit auch der kleinste Unterschied) ist ja nun 1 Pa. Der Quantisierungsfehler beträgt also 0,49 Pa., was 2,44 dB entspricht. Im Bezug auf die Schmalbandpegel ist dieser Wert noch höher, so dass für hohe Frequenzen der Informationsgehalt des gemessenen Signals gegen Null geht, da das Nutzsignal im Quantisierungsrauschen verschwindet.
  • Reduziert man die Pegelung dagegen auf 100 dB, so kann ein Wert von 01100000 abgelegt werden, was 1,50 entspricht. Der Quantisierungsfehler beträgt jetzt nur noch 0,058 dB