Bedingte Varianz

aus Wikipedia, der freien Enzyklopädie

Die bedingte Varianz beschreibt in der Wahrscheinlichkeitstheorie und Statistik die Varianz einer Zufallsvariablen unter der Voraussetzung, dass noch zusätzliche Informationen über den Ausgang des zugrunde liegenden Zufallsexperiments verfügbar sind. Sie ist definiert als der bedingte Erwartungswert der quadratischen Abweichung der Zufallsvariablen von ihrem bedingten Erwartungswert. Wie bei diesem kann die Bedingung beispielsweise darin bestehen, dass bekannt ist, ob ein gewisses Ereignis eingetreten ist oder welche Werte eine weitere Zufallsvariable angenommen hat; abstrakt kann die Zusatzinformation als Unterraum des zugrunde liegenden Ereignisraums aufgefasst werden.

Eine wichtige Anwendung ist die Varianzzerlegung, eine Formel, mit der Varianzen durch bedingte Varianzen und bedingte Erwartungswerte dargestellt werden können und die auch in der Regressionsanalyse eine Rolle spielt. Zeitreihenmodelle wie ARCH-Modelle oder dessen Verallgemeinerung GARCH-Modelle verwenden bedingte Varianzen, um gezielt stochastische Abhängigkeiten in Prozessen zu modellieren, wie sie vor allem in finanzmathematischen Fragestellungen auftreten.

Definition

Es seien und zwei reelle Zufallsvariable auf einem Wahrscheinlichkeitsraum , dann heißt

die bedingte Varianz von gegeben (oder Varianz von bedingt auf ).

Analog zum bedingten Erwartungswert betrachtet man auch die bedingten Varianzen

  • gegeben ein Ereignis ,
  • gegeben, dass den Wert annimmt,

sowie allgemein

  • gegeben eine Teil-σ-Algebra .

Dazu werden in der Definition die beiden Erwartungswerte jeweils auf , bzw. bedingt.

Im Folgenden werden alle Formeln nur für die Bedingung auf eine weitere Zufallsvariable angegeben, für die anderen Fälle gelten sie entsprechend. Es ist jedoch zu beachten, dass und nichtnegative reelle Zahlen (oder ) sind, während es sich bei und um Zufallsvariablen handelt. Alle folgenden Gleichungen und Ungleichungen für Letztere sind wegen der Nichteindeutigkeit von bedingten Erwartungswerten als -fast sicher zu verstehen, ohne dass dies explizit angegeben wird.

Definition im diskreten und stetigen Fall

Im diskreten und stetigen Fall sind die bedingten Varianzen definiert durch

Falls diskret Falls stetig

Hierbei stellt den bedingten Erwartungswert und die bedingte Dichte dar.

Einfache Rechenregeln

Aus der zur (unbedingten) Varianz analogen Definition ergibt sich zusammen mit den Rechenregeln für bedingte Erwartungswerte, dass die Rechenregeln für Varianzen entsprechend weiterhin gelten. Insbesondere hat man:

  • Nichtnegativität:
  • Affine Transformationen: für alle
  • Verschiebungssatz:

Varianzzerlegung

Eine wichtige Aussage im Zusammenhang mit der bedingten Varianz ist die Varianzzerlegung (auch Satz von der totalen Varianz genannt), nach der die (unbedingte) Varianz einer Zufallsvariablen die Summe aus dem Erwartungswert ihrer bedingten Varianz und der Varianz ihres bedingten Erwartungswerts ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(X) = \operatorname{E}(\operatorname{Var}(X \mid Y)) + \operatorname{Var}(\operatorname{E}(X \mid Y))} .

Das sieht man so: Der bedingte Erwartungswert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U := \operatorname{E}(X \mid Y)} ist eine Zufallsvariable mit Erwartungswert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(U) = \operatorname{E}(X)} und Varianz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(U) = \operatorname{E}(U^2) - \operatorname{E}(X)^2} .

Die bedingte Varianz hat den Erwartungswert

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(\operatorname{Var}(X \mid Y)) = \operatorname{E}(\operatorname{E}(X^2 \mid Y)) - \operatorname{E}(U^2) = \operatorname{E}(X^2) - \operatorname{E}(U^2)} .

Addition der letzten beiden Gleichungen ergibt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(\operatorname{Var}(X \mid Y)) + \operatorname{Var}(\operatorname{E}(X \mid Y)) = \operatorname{E}(X^2) - \operatorname{E}(X)^2 = \operatorname{Var}(X)} .

Beispiele

Wie viele Küken?
  • Ein Huhn legt in einem festen Zeitraum eine zufällige Anzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} von Eiern, von der angenommen wird, dass sie Poisson-verteilt mit Erwartungswert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} ist. Aus jedem dieser Eier schlüpfe – unabhängig von den anderen – mit einer festen Wahrscheinlichkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \in (0,1)} ein Küken. Die Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} bezeichne die Anzahl der geschlüpften Küken. Unter der Bedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N = n} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \in \N} ist dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} binomialverteilt mit Parametern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} , es gilt daher
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(X \mid N = n) = np\quad} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \quad\operatorname{Var}(X \mid N = n) = np(1-p)} ,
also
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(X \mid N) = Np\quad} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \quad\operatorname{Var}(X \mid N) = Np(1-p)} .
Mit dem Satz vom totalen Erwartungswert folgt
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(X) = \operatorname{E}(Np) = p\operatorname{E}(N) = p \mu}
und mit der Varianzzerlegung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(X) = \operatorname{E}(Np(1-p)) + \operatorname{Var}(Np) = p(1-p) \operatorname{E}(N) + p^2 \operatorname{Var}(N) = p(1-p)\mu + p^2\mu = p\mu} .
  • Die Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} seien bivariat normalverteilt mit Erwartungswerten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_Y} , Varianzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_X^2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_Y^2} sowie dem Korrelationskoeffizienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varrho \in [-1,1]} . Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} bedingt auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y = y} normalverteilt mit Erwartungswert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_X + \tfrac{\sigma_X}{\sigma_Y}\varrho(y - \mu_Y)} und Varianz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1-\varrho^2)\sigma_X^2} . Insbesondere ist also in diesem Beispiel die bedingte Varianz
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(X \mid Y) = (1-\varrho^2)\sigma_X^2}
konstant (unabhängig von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} ).

Literatur

  • Richard Durrett: The Essentials of Probability. Duxbury Press, Belmont 1994, ISBN 0-534-19230-0, S. 206–213.
  • Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2. Auflage. Springer, Berlin/Heidelberg 2011, ISBN 978-3-642-21025-9.