Beste Antwort
In der Spieltheorie ist die beste Antwort (englisch best response) eines Spielers auf die Strategien der anderen Spieler diejenige Strategie, die ihm die höchste Auszahlung liefert. Die Menge der besten Antworten spielt bei der Bestimmung von Nash-Gleichgewichten eine große Rolle.
Mathematische Definition
Im Folgenden bezeichne die Menge der Strategien von Spieler und sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_i} ein Element dieser Menge, d. h. eine Strategie des Spielers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} . Weiterhin bezeichne Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (s_1,\dotsc,s_n)} eine Kombination der Strategien von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Spielern und die Auszahlungsfunktion des Spielers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} . Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G=\{S_1,S_2;u_1,u_2\}} ein Normalformspiel. Die Menge der besten Antworten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle BR_{1}(t)} des Spielers 1 auf die Strategie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t \in S_2} des Spielers 2 ist definiert als:[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle BR_{1}(t)=\{s \in S_1\mid u_1(s,t)\geq u_1(s',t)\;\forall \; s' \in S_1\}}
Analog gilt für Spieler 2
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle BR_{2}(s)=\{t \in S_2\mid u_2(s,t)\geq u_2(s,t')\;\ \forall\;\ t' \in S_2\}}
Zusammenhang mit dem Nash-Gleichgewicht
Das Paar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (s,t)} ist ein Nash-Gleichgewicht, wenn beide Strategien jeweils beste Antworten aufeinander sind. Wenn also gilt:
- und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t\in BR_{2}(s)}
Beste-Antwort-Korrespondenzen
Matching Pennies
Ein berühmtes Entscheidungsproblem in der Spieltheorie stellt das Spiel Matching Pennies dar: Zwei Spieler legen gleichzeitig eine Münze auf den Tisch. Liegt bei beiden Münzen Kopf (K) oder bei beiden Münzen Zahl (Z) oben, so gehören die beiden Münzen Spieler 1; zeigen die beiden Münzen verschiedene Seiten, so gehören die beiden Münzen Spieler 2. Da der Sieger also die Münze des Verlierers gewinnt, handelt es sich um ein Nullsummenspiel. Als Bimatrix ergibt sich folgende Darstellung:
Kopf | Zahl | |
---|---|---|
Kopf | 1 , −1 | −1, 1 |
Zahl | −1 , 1 | 1 , −1 |
In der vereinfachten Darstellung erhält man folgende Matrix:
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\begin{array}{c|rr}&K&Z\\\hline K&1&-1\\Z&-1&1\end{array}}\quad {\text{also die Matrix}}\quad A=\left({\begin{array}{rr}1&-1\\-1&1\end{array}}\right)}
Einzelnachweise
- ↑ Wolfgang Leiniger: Einführung in die Spieltheorie. S. 21.
- ↑ Jürgen Eichberger: Grundzüge der Mikroökonomik. 2004, S. 420.