Brewster-Winkel
Der Brewster-Winkel (nach Sir David Brewster, 1781–1868) oder Polarisationswinkel ist eine Größe der Optik. Er gibt den Winkel an, bei dem von Licht, das auf die Grenzfläche zweier dielektrischer Medien einfällt, nur die senkrecht zur Einfallsebene polarisierten Anteile (bezogen auf die elektrische Feldkomponente) reflektiert werden. Das reflektierte Licht ist dann linear polarisiert.
Man spricht von einem Pseudo-Brewster-Winkel, wenn die Reflexion an der Grenzfläche zweier Medien erfolgt, von denen mindestens eines kein ideales Dielektrikum ist. Dann wird das reflektierte Licht nur teilweise polarisiert.[1]
Phänomenologische Beschreibung
Eine elektromagnetische Welle, z. B. sichtbares Licht, welche nicht senkrecht auf eine Grenzfläche zwischen zwei Medien auftrifft, wird teilweise reflektiert und teilweise in das zweite Medium hinein gebrochen. Der reflektierte bzw. der gebrochene Anteil ist dabei zumindest teilweise polarisiert. Dies lässt sich beispielsweise mithilfe eines Polarisationsfilters beobachten. Wenn man bei konstantem Einfallswinkel den Filter um die Ausbreitungsrichtung des reflektierten Lichtes rotiert, so lässt sich ein Helligkeitsminimum feststellen, wenn die Transmissionsachse des Filters in der Einfallsebene der Welle liegt. Die Tiefe dieses Helligkeitsminimums ist abhängig vom gewählten Einfallswinkel. Bei einem bestimmten Einfallswinkel ist die Helligkeit im Minimum null, es wird dann also nur noch senkrecht zur Einfallsebene polarisiertes Licht reflektiert. Dieser Einfallswinkel wird Brewster-Winkel genannt. Sein Wert ist abhängig von den Brechungsindizes der Medien, zwischen denen der Übergang stattfindet. Er ist also abhängig vom Material der Medien und von der Frequenz der elektromagnetischen Welle.
Die Beobachtungen werden durch die fresnelschen Formeln beschrieben, mit deren Hilfe sich das Reflexionsvermögen in Abhängigkeit vom Einfallswinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_\mathrm{1}} und den Brechungsindizes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2} für die jeweilige Polarisation des einfallenden Lichts berechnen lässt (siehe Abbildung).
Physikalische Grundlagen
Eine unpolarisierte Welle lässt sich in zwei zueinander senkrecht linear polarisierte Anteile zerlegen. Die Vektoren der elektrischen Feldstärke liegen dabei senkrecht bzw. parallel zur Einfallsebene (senkrecht bzw. parallel linear polarisierter Anteil, auch s- bzw. p-Polarisation genannt). Der eintreffende Lichtstrahl regt die Elektronen des Materials zum Schwingen an (Verschiebungspolarisation). Es entsteht dadurch eine Ansammlung von atomaren Dipolen (hertzsche Dipole), die in Polarisationsrichtung schwingen und dadurch Sekundärwellen ausstrahlen, die nur in Richtung des reflektierten und des gebrochenen Strahles konstruktiv interferieren.
Beim senkrecht polarisierten Anteil liegen Ein- und Ausfallsrichtung senkrecht zur Schwingungsrichtung der Dipole und somit in einer Richtung, in die ein hertzscher Dipol maximal ausstrahlt. Dabei bleibt die Polarisation erhalten. Anders verhält es sich bei der Anregung durch den parallel polarisierten Anteil, hier ergibt sich ein vom Einfallswinkel veränderlicher Winkel Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \alpha =90^{\circ }-(\theta _{1}+\theta _{2})} zwischen der Schwingungsrichtung der hertzschen Dipole und der Richtung der reflektierten Welle. Mit dem Anregungswinkel variiert auch die Strahlungsintensität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} des Dipols(Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I \sim \sin^2 \alpha} ), daher werden beide Polarisationsanteile mit unterschiedlicher Intensität abgestrahlt und das reflektierte Licht ist teilweise polarisiert. Im Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha = 0} (Richtung der Dipolachse ist identisch mit der Richtung der Reflexion) erfolgt für den parallel polarisierten Anteil keine Abstrahlung der Dipole in Reflexionsrichtung und das reflektierte Licht ist vollständig senkrecht linear polarisiert.
Brewstersches Gesetz
Der Einfallswinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_{B}} (Brewster-Winkel), unter dem beim Übergang zwischen zwei beliebigen, nicht magnetisierbaren Medien das reflektierte Licht vollständig senkrecht polarisiert ist, lässt sich aus dem snelliusschen Brechungsgesetz und der zuvor beschriebenen Strahlungscharakteristik der Dipole (erzwungene Schwingung) herleiten. Im Folgenden wird angenommen, dass der Strahl von der Luft aus auf ein anderes Material trifft. Für Luft kann man in guter Näherung einen Brechungsindex von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1=1} annehmen. Das Material habe den Brechungsindex .
Das snelliussche Brechungsgesetz lautet:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1 \sin \left( \theta_1 \right) =n_2 \sin \left( \theta_2 \right)}
Für einen im Brewster-Winkel einfallenden Strahl verläuft der gebrochene Strahl senkrecht zum reflektierten Strahl:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_1 = \theta_\mathrm{B}}
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \theta _{2}=90^{\circ }-\theta _{\mathrm {B} }}
zusammen mit dem Reflexionsgesetz (Einfallswinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_1} gleich Reflexionswinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_\mathrm{a}} ) erhält man durch Einsetzen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1 \sin \left( \theta_\mathrm{B} \right) =n_2 \sin \left( 90^\circ - \theta_\mathrm{B} \right)=n_2 \cos \left( \theta_\mathrm{B} \right)}
und nach Umstellen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_\mathrm{B} = \arctan \left( \frac{n_2}{n_1} \right) } (brewstersches Gesetz).
Beispiel – Reflexion an Glas
Anhand des vorhergehenden Abschnittes ist erkennbar, dass eine Glasplatte als Polarisator verwendet werden kann, indem man sie im Brewster-Winkel bestrahlt.
Mit den oben bezeichneten Winkeln und dem Brechungsgesetz gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_\mathrm{a} + 90^\circ + \theta_2 = 180^\circ; \quad \theta_2 = 90^\circ - \theta_1}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_1 = \theta_\mathrm{a}\,}
Unter der Annahme bei den verwendeten Materialien Luft (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1 = 1 } ) und gewöhnlichem Glas (Kalk-Natron-Glas, Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle n_{2}=1{,}55} , beachte: kein Quarzglas (Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathrm {SiO} _{2}} ), dort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2 = 1{,}46} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_\mathrm{B, \mathrm{Luft-Si O_2}}} entsprechend Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 55{,}59^\circ} ) handele es sich um ideale, nicht absorbierende Materialien (Dielektrika), gilt das oben beschriebene brewstersche Gesetz:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_\mathrm{B} = \arctan \left( \frac{n_2}{n_1} \right) }
Für den Übergang von Luft in Glas ergibt sich ein Brewster-Winkel:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_\mathrm{B, \mathrm{Luft-Glas}} = \arctan \left( \frac{n_2}{n_1} \right) = \arctan \left( \frac{1{,}55}{1{,}0} \right) = 57{,}17^\circ }
Gemäß den Fresnel-Gleichungen ergeben sich für den senkrechten bzw. parallelen Anteil des einfallenden Lichtes folgende Reflexionsgrade (Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle R_{s}} bzw. Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle R_{p}} ):
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle R_{s}=r_{s}^{2}=\left({\frac {n_{1}\cos(\theta _{1})-n_{2}\cos(\theta _{2})}{n_{1}\cos(\theta _{1})+n_{2}\cos(\theta _{2})}}\right)^{2}=\left({\frac {\cos(\theta _{B,\mathrm {Luft-Glas} })-{\sqrt {{\tilde {n}}^{2}-\sin ^{2}\theta _{B,\mathrm {Luft-Glas} }}}}{\cos(\theta _{B,\mathrm {Luft-Glas} })+{\sqrt {{\tilde {n}}^{2}-\sin ^{2}\theta _{B,\mathrm {Luft-Glas} }}}}}\right)^{2}=0{,}1699=16{,}99\,\%}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_p = r_p^2 = \left( \frac{n_2 \cos(\theta_1) - n_1 \cos(\theta_2)}{n_2 \cos(\theta_1) + n_1 \cos(\theta_2)} \right)^2 = \left( \frac{\tilde n^2\cos(\theta_{B, \mathrm{Luft-Glas}}) - \sqrt{\tilde n^2- \sin^2 \theta_{B, \mathrm{Luft-Glas}}}}{\tilde n^2\cos(\theta_{B, \mathrm{Luft-Glas}}) + \sqrt{\tilde n^2- \sin^2 \theta_{B, \mathrm{Luft-Glas}}}} \right)^2 = 0{,}0 = 0{,}0\,\% }
mit Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\tilde {n}}={\frac {n_{2}}{n_{1}}}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta_1 = \theta_{B, \mathrm{Luft-Glas}}}
Das reflektierte Licht ist demnach vollständig senkrecht zur Einfallsebene linear polarisiert.
Bei Einstrahlung unpolarisierten Lichts (alle Polarisationen gleich stark vertreten) lässt sich der Reflexionsgrad über das arithmetische Mittel der beiden Komponenten bestimmen, es gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R = \frac{R_s+R_p}{2}}
Für den beschriebenen Übergang von unpolarisiertem Licht werden daher nur 8,5 % der eingestrahlten Intensität (im Brewster-Winkel) reflektiert.
Literatur
- F. Pedrotti, L. Pedrotti, W. Bausch, H. Schmidt: Optik für Ingenieure: Grundlagen. 2. Auflage. Springer, Berlin 2001, ISBN 3-540-67379-2.
Weblinks
Einzelnachweise
- ↑ Edward D. Palik (Hrsg.): Handbook of Optical Constants of Solids. Vol. 1. Academic Press, 1997, ISBN 0-08-052375-7, S. 71.