Brillouin-Funktion

aus Wikipedia, der freien Enzyklopädie
[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:
Brillouin-Funktion
für verschiedene Werte von J

Die Brillouin-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B(x)} (nach dem französisch-amerikanischen Physiker Léon Brillouin (1889–1969)) ist eine spezielle Funktion, die aus der quantenmechanischen Beschreibung eines Paramagneten hervorgeht:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{alignat}{2} B_J(x) & = \frac{2J + 1}{2J} \cdot \coth \left( \frac{2J + 1}{2J} \, x \right) &&- \frac 1{2J} \cdot \coth \left( \frac{1}{2J} \, x \right)\\ & = \left( 1 + \frac{1}{2J} \right) \cdot \coth \left[ \left( 1 + \frac{1}{2J} \right) x \right] &&- \frac 1{2J} \cdot \coth \left( \frac{1}{2J} \, x \right) \end{alignat}}

Die Formelzeichen stehen für folgende Größen:

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J} in der physikalischen Anwendung für die Gesamtdrehimpulsquantenzahl
  • für den Kotangens hyperbolicus.

Verwendung

Mit der Brillouin-Funktion kann die Magnetisierung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} eines Paramagneten der Stoffmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} in einem äußeren Magnetfeld formuliert werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} M &= N m B_J(\xi)\\ \Leftrightarrow B_J(\xi) &= \frac{M}{N m}. \end{align}}

mit

  • dem magnetischen Moment eines Teilchens
  • dem Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi = \frac{m B}{k_\mathrm B \, T} = \frac{g \mu_\mathrm B \, J B}{k_\mathrm B \, T}}
    • dem Betrag Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} der magnetischen Flussdichte des angelegten äußeren Magnetfeldes
    • der Boltzmann-Konstante
    • der absoluten Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T}
    • dem Landé-Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g}
    • dem Bohrschen Magneton Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_\mathrm B} .

Eine weitere, halb-klassische Beschreibung eines Paramagneten geschieht mit Hilfe der Langevin-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L} , die sich im Limes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J \to \infty} und zugleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g \mu_\mathrm B \to 0} aus der Brillouin-Funktion ergibt (wobei das magnetische Gesamtmoment konstant bleibt):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} M &= N m L(\xi)\\ \Leftrightarrow L(\xi) &= \frac{M}{N m}. \end{align}}

Literatur

  • Torsten Fließbach: Statistische Physik – Lehrbuch zur Theoretischen Physik IV. Elsevier-Spektrum Akademischer Verlag, Heidelberg 2006.

Weblinks