Fixpunktsatz von Brouwer

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Brouwerscher Fixpunktsatz)

Der Fixpunktsatz von Brouwer ist eine Aussage aus der Mathematik. Er ist nach dem niederländischen Mathematiker Luitzen Egbertus Jan Brouwer benannt und besagt, dass die Einheitskugel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D^n} die Fixpunkteigenschaft hat. Mit Hilfe dieser Aussage kann man Existenzaussagen über Lösungen reeller, nichtlinearer Gleichungssysteme treffen.

Aussage

Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D^n = \{x \in \R^n : \|x\| \leq 1 \}} wird die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -dimensionale Einheitskugel bezeichnet. Dann besitzt jede stetige Selbstabbildung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D^n} in sich selbst mindestens einen Fixpunkt.

In Quantorenschreibweise lässt sich die Aussage durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall f \in C(D^{n},D^{n}): \exists x \in D^n : f(x) = x}

darstellen.

Oft wird Brouwers Fixpunktsatz anschaulich dadurch erklärt, dass man nach beliebig langem Umrühren eines Kaffees stets einen Punkt findet, der nach dem Rührvorgang wieder an der ursprünglichen Stelle (wie vor dem Rühren) ist, d. h. ein Fixpunkt ist.[1][2] Dabei wird vereinfachend die brownsche Molekularbewegung vernachlässigt, d. h. die Kaffeemoleküle sind vor und nach dem Umrühren vollständig in Ruhe. Weiterhin sollen die Moleküle nicht diskret sein, sondern ein Kontinuum bilden. Der Inhalt der Tasse (d. h. der Kaffee) soll überdies konvex geformt und homöomorph zur Einheitskugel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D^3} sein.[3]

Beweisidee

Mittels des Approximationssatzes von Stone-Weierstraß kann man sich auf -Funktionen beschränken.

Nun nimmt man an, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} habe keinen Fixpunkt. Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F\colon D^n\to S^{n-1}} , gegeben durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x):=x + \left( \sqrt{1-|x|^2 + \left\langle x,\frac{x-f(x)}{|x-f(x)|} \right\rangle^2 } - \left\langle x, \frac{x-f(x)}{|x-f(x)|} \right\rangle \right) \frac{x-f(x)}{|x-f(x)|} } ,
[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:
Illustration von F in D2

eine wohldefinierte und glatte Abbildung, die jedem Punkt in der Vollkugel den Schnittpunkt der Halb-Geraden von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)} durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} mit der Sphäre zuordnet. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} ist insbesondere eine Retraktion, d. h., für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in S^{n-1}} gilt .

Dies führt man auf einen Widerspruch, indem man zunächst zeigt, dass für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega^{n-1}:= F^1\, \mathrm dF^2\wedge\cdots\wedge \mathrm dF^n } gilt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm d\omega^{n-1} = 0} . Dies sieht man leicht ein, da die Determinante der Jacobi-Matrix von F nach dem Satz von der inversen Funktion 0 sein muss.

Also gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 = \int_{D^n} \mathrm d\omega^{n-1} = \int_{S^{n-1}} \omega^{n-1} }

nach dem Satz von Stokes. Auf der Sphäre ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} aber die Identität. Damit gilt also (wieder nach dem Satz von Stokes):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \int_{S^{n-1}} x_1 \mathrm dx^2 \wedge \cdots \wedge \mathrm dx^n = {\rm vol}(D^n) \neq 0 } .

Andere Beweise benutzen das Lemma von Sperner (siehe Aigner, Ziegler, Das Buch der Beweise, Kapitel 25) oder den Satz von Borsuk-Ulam.

Topologisch gleichwertige Formulierungen

Die Aussage des Brouwerschen Fixpunktsatzes in ihrem topologischen Kerngehalt lässt sich also wie folgt zusammenfassen:[4]

  • Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (n-1)} -dimensionale Sphäre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^{n-1} } ist niemals ein Retrakt der -dimensionalen Einheitskugel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D^n } .

Oder anders gesagt:

  • Es gibt keine stetige Abbildung der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -dimensionalen Einheitskugel auf die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (n-1)} -dimensionale Sphäre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^{n-1} } , welche die Punkte der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^{n-1} } fix lässt.

Damit gleichwertig ist die folgende Darstellung:[4]

  • Eine Sphäre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^{n-1} } ist nie ein zusammenziehbarer Raum.

Oder anders gesagt:

  • Die identische Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle id_{S^{n-1}} } einer Sphäre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^{n-1} } ist nicht nullhomotop.

Verallgemeinerungen

Mittels einer stetigen Transformation auf das Simplex, das homöomorph zur Einheitskugel ist, lässt sich die Aussage des Satzes auf beliebige kompakte, konvexe Mengen in einem endlichdimensionalen Banachraum übertragen:

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} eine stetige Abbildung von einer nichtleeren, kompakten, konvexen Teilmenge eines endlichdimensionalen Banachraumes in sich selbst. Dann hat einen Fixpunkt.

Auch diese Aussage wird manchmal als Fixpunktsatz von Brouwer bezeichnet, siehe hierzu auch seine Verallgemeinerung zum Fixpunktsatz von Schauder.

Der Ausfüllungssatz

Die soeben angegebene Verallgemeinerung des Brouwerschen Fixpunktsatzes kann ihrerseits als Folgerung aus dem folgenden Satz gezogen werden, welcher auch als Ausfüllungssatz bezeichnet wird:[5]

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega } eine beschränkte offene Teilmenge des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon \overline{\Omega} \rightarrow \R^n} eine stetige Abbildung und dabei
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = x } für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \partial{\Omega}, }
so gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\overline{\Omega}) \supset \Omega } .

Den Zusammenhang mit dem Ausfüllungssatz erhält man, wenn man einbezieht, dass jeder endlichdimensionale Banachraum einem topologisch äquivalent ist und dass jede darin enthaltene kompakte, konvexe Teilmenge eine Menge von der Art der obigen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{\Omega} } darstellt.

Der Ausfüllungssatz selbst ergibt sich aus einer direkten Anwendung der Eigenschaften des Abbildungsgrades.[6]

Literatur

Weblinks

Commons: Brouwer fixed point theorem – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Tristan Needham: Visual Complex Analysis. Oxford University Press, 1999, ISBN 978-0-19-853446-4, S. 354–355.
  2. Karl Mosler, Rainer Dyckerhoff, Christoph Scheicher: Mathematische Methoden für Ökonomen. Springer, 2017, ISBN 978-3-662-54246-0, S. 105.
  3. Fridtjof Toenniessen: Topologie: Ein Lesebuch von den elementaren Grundlagen bis zur Homologie und Kohomologie. Springer, 2017, ISBN 978-3-662-54963-6, S. 139–140.
  4. a b Harzheim: S. 158
  5. Harzheim: S. 157–160
  6. Harzheim: S. 157