Collatz-Problem

aus Wikipedia, der freien Enzyklopädie

Das Collatz-Problem, auch als (3n+1)-Vermutung bezeichnet, ist ein ungelöstes mathematisches Problem, das 1937 von Lothar Collatz gestellt wurde. Es hat Verbindungen zur Zahlentheorie, zur Theorie dynamischer Systeme und Ergodentheorie und zur Theorie der Berechenbarkeit in der Informatik.

Das Problem gilt als notorisch schwierig, obwohl es einfach zu formulieren ist. Jeffrey Lagarias, der als Experte für das Problem gilt, zitiert eine mündliche Mitteilung von Paul Erdős, der es als „absolut hoffnungslos“ bezeichnete.[1]

Problemstellung

Einleitung

Säulendiagramm. Gezeigt ist die Häufigkeit einer bestimmten Länge der Collatz-Folge als Wert auf der y-Achse gegen die Länge der Collatz-Folge als Wert auf der x-Achse. Das Diagramm wurde mit den Werten der Zahlen 1 bis 100 Millionen erzeugt.

Bei dem Problem geht es um Zahlenfolgen, die nach einem einfachen Bildungsgesetz konstruiert werden:

  • Beginne mit irgendeiner natürlichen Zahl .
  • Ist gerade, so nimm als nächstes .
  • Ist ungerade, so nimm als nächstes .
  • Wiederhole die Vorgehensweise mit der erhaltenen Zahl.

Zum Beispiel ergibt sich mit der Startzahl die Folge

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, …

Die Folge tritt somit in einen Zyklus ein, in dem die Zahlen 4, 2, 1 ständig wiederholt werden.

Die Collatz-Vermutung lautet nun:

Die Zahlenfolge mündet immer in den Zyklus 4, 2, 1, egal, mit welcher positiven natürlichen Zahl man beginnt.

Diese Vermutung konnte man bislang weder beweisen noch widerlegen.

Mathematische Formulierung der Vermutung

Bezeichne mit

  • die natürlichen Zahlen ohne die Null.
  • die natürlichen Zahlen mit der Null.

Sei und die Collatz-Funktion

Definiere den Collatz-Orbit

Dann lautet die Vermutung:

Zu jedem existiert ein , so dass .

Erläuterungen

Für den Orbit gilt somit , usw.

Um die Vermutung zu beweisen, muss man für jedes zeigen, dass ein solches existiert. Um die Vermutung zu widerlegen, muss man ein finden, für das ein solches nicht existiert.

Eine gleichwertige Aussage der Vermutung ist, dass das kleinste Element jedes Collatz-Orbits die Zahl ist.

Preisgeld für die Lösung

Trotz zahlreicher Anstrengungen gehört diese Vermutung noch immer zu den ungelösten Problemen der Mathematik. Mehrfach wurden Preise für eine Lösung ausgelobt:

  • 1970 bot H. S. M. Coxeter 50 Dollar für einen Beweis der Vermutung und 100 Dollar für ein Gegenbeispiel.[2]
  • 1982 versprach Bryan Thwaites in der Zeitung The Times 1000 Pfund für einen Beweis oder eine Widerlegung (Angebot 1996/1998 erneuert).[3][4][5][6]
  • Paul Erdős bot angeblich 500 Dollar für eine Lösung[7] und sagte über das Collatz-Problem:[1]
„Mathematics is not yet ready for such problems.“ („Die Mathematik ist für solche Probleme noch nicht bereit.“) und
„Hopeless. Absolutely hopeless.“ („Hoffnungslos. Absolut hoffnungslos.“)
  • 2021 bot Bakuage Co., Ltd. mit Sitz in Shibuya, Tokio, 120 Millionen Yen (ca. 850.000 €)[8]

Der Mathematiker Richard Guy warnte 1983 vor diesem und drei anderen auch heute noch ungelösten Problemen:[9][10]

„Don’t try to solve these problems!“ („Versuche nicht, diese Probleme zu lösen!“)

Ursprung und Geschichte

Der Ursprung der Collatz-Vermutung liegt insofern etwas im Nebel, als aus der mutmaßlichen Entstehungszeit bisher keine schriftlichen Dokumente mit einer Beschreibung des Problems öffentlich zugänglich sind. Es wird berichtet, dass Collatz das Problem beim Internationalen Mathematikerkongress 1950 in Cambridge (Massachusetts) mündlich verbreitete.[11] Stanisław Ulam und Shizuo Kakutani, die auf diesem Kongress zu Vorträgen eingeladen waren, stellten das Problem immer wieder in Gesprächen dar und werden deshalb in diesem Zusammenhang häufig genannt. Als Lothar Collatz 1952 seine Professur in Hamburg antrat, erzählte er seinem Hamburger Kollegen Helmut Hasse von der Vermutung. Dieser verbreitete das Problem während eines Forschungsaufenthalts an der Syracuse University, deshalb erhielt das Collatz-Problem auch den Namen Syracuse-Vermutung. Publikationen zur Entstehung und Verbreitung:

  • 1971 wurde das Collatz-Problem in der gedruckten Version eines 1970 gehaltenen Vortrags von H. S. M. Coxeter zum vermutlich ersten Mal schriftlich veröffentlicht.[2]
  • 1972 erfuhr Martin Gardner von der Beschäftigung der akademischen Hacker am MIT mit dem (3n+1)-Problem[12] und beschrieb es in seiner Kolumne Mathematical Games im Scientific American.[13] Die Vermutung wurde durch diese und weitere Veröffentlichungen unter anderem von John Conway[14] inner- und außerhalb von Fachkreisen weithin bekannt.
  • 1976 veröffentlichte Riho Terras die ersten wissenschaftlichen Forschungsergebnisse direkt zum Collatz-Problem.[15] Terras zeigte mit probabilistischen Methoden, dass
für fast alle (bezüglich der logarithmischen Dichte) gilt.[16]
  • 1985 erschien in der Zeitschrift American Mathematical Monthly ein Überblicksartikel von Jeffrey Lagarias.[17] Lagarias berichtet darin über Collatz’ Interesse an zahlentheoretischen Funktionen und Graphentheorie, und er zitiert einen Notizbucheintrag vom 1. Juli 1932, in dem Collatz die folgende Permutation der positiven ganzen Zahlen betrachtet:
Diese Permutation besitzt den Fixpunkt 1 und außerdem zumindest die Zyklen (2, 3), (4, 5, 7, 9, 6) und (44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66). In dem zitierten Notizbucheintrag stellt Collatz die auch heute noch offene Frage, ob die mit 8 beginnende g-Trajektorie zyklisch wird oder gegen unendlich divergiert.[18][11] Die ebenfalls weiterhin offene Frage, ob weitere Zyklen existieren, ist wie die (3n+1)-Vermutung eines der von Guy beschriebenen Probleme, die man nicht zu lösen versuchen solle.[9][19]
  • 1985 veröffentlichte Bryan Thwaites eine Mitteilung, er habe die Vermutung am 21. Juli 1952 um vier Uhr nachmittags als Aufgabe zur Unterhaltung seiner Schüler gestellt (er beanspruchte bereits 1982 die Entdeckung im Jahr 1952).[4][20][6]
  • 1986 ließ Lothar Collatz eine Darstellung seines Entdeckungswegs zur (3n+1)-Vermutung ins Chinesische übersetzen und in einem Journal der Pädagogischen Universität Qufu, Shandong, China, an der er einen Vortrag darüber gehalten hatte, veröffentlichen.[21] Dies blieb die einzige Veröffentlichung von Collatz zu diesem Problem.

Nach Terras’ Publikation 1976 begann nach und nach eine rege wissenschaftliche Beschäftigung mit dem Collatz-Problem, die mittlerweile weit mehr als hundert Publikationen mit neuen Forschungsergebnissen umfasst. Im populärwissenschaftlichen Bereich entstanden neue Bezeichnungen:

  • 1979 nannte Douglas R. Hofstadter in seinem Buch Gödel, Escher, Bach diejenigen Startzahlen, deren Collatz-Trajektorie im Zyklus (1,4,2) endet, wondrous numbers, wundersame Zahlen.[22]
  • 1984 nannte Brian Hayes die Zahlen von Collatz-Folgen in der Kolumne Computer recreations im Scientific American hailstone numbers, Hagelschlagzahlen.[23]
  • 1994 zeigte Ivan Korec, dass für die Anfangswerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} fast überall für den Collatz-Algorithmus einen Wert unter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^{0,7925}} erreichen.[24]
  • 2019 zeigte Terence Tao, dass die Collatz-Vermutung für die natürlichen Zahlen fast zutrifft, siehe Abschnitt Collatz-Problem#Teillösung von Tao.[25] Tao nützte dabei probabilistische Methoden und zeigte mittels der logarithmischen Dichte, dass das Infimum des Collatz-Orbits für die Elemente fast überall für jede divergierende Funktion beschränkt ist, egal wie langsam diese divergiert (zum Beispiel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \log\log\log\log n} ).[26]

Collatz-Graph einer Funktion

Ausschnitt aus dem Collatz-Graphen zur Collatz-Funktion

Collatz’ Beschreibung seiner Motivation der (3n+1)-Vermutung ist sehr plausibel:[27] Er assoziiert zunächst ganz allgemein zu einer beliebigen Funktion auf den natürlichen Zahlen mit Werten in den natürlichen Zahlen einen gerichteten Graphen, der von Lagarias im oben erwähnten Überblicksartikel Collatz-Graph genannt wird. Der Collatz-Graph einer zahlentheoretischen Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon \mathbb{N} \to \mathbb{N}}

ist ein gerichteter Graph, bestehend aus der Menge der natürlichen Zahlen als Knotenmenge und zu jeder natürlichen Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} einer gerichteten Kante von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(n)} .

Die einfachste solche Funktion ist die Nachfolgerabbildung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s\colon \mathbb{N} \to \mathbb{N}, \quad s(n) = n+1,}

deren Collatz-Graph aus einem unendlich langen Weg besteht:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 \to 2 \to 3 \to 4 \to 5 \to \dotsb}

Um mehr Beispiele zu haben, suchte er zunächst nach einer möglichst „einfachen“ zahlentheoretischen Funktion, deren Collatz-Graph einen Kreis enthält. Eine solche Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} muss auf gewissen natürlichen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} „aufsteigen“, also die Relation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n<f(n)} erfüllen, und auf anderen natürlichen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} „absteigen“, also die Relation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m>f(m)} erfüllen. So stieß er zunächst auf die Funktion, die definiert ist durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_1(n) := \begin{cases} n/2 & \text{wenn } n \text{ gerade ist,} \\ n+1 \quad & \text{wenn } n \text{ ungerade ist.} \end{cases}}

Den Collatz-Graphen dieser Funktion kann man wie folgt beschreiben: Die Knoten sind, nach Definition, die positiven ganzen Zahlen. Ist der Knoten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} gerade, besitzt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} die beiden Vorgängerknoten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k-1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2k} , sonst nur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2k} . Außerdem gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_1^2(n) = C_1(C_1(n)) = \begin{cases} \frac{n}{4} & \text{wenn } n \text{ durch 4 teilbar ist,} \\ \frac{n}{2} + 1 & \text{wenn } n \text{ durch 2, aber nicht durch 4 teilbar ist,} \\ \frac{n+1}{2} \quad & \text{wenn } n \text{ ungerade ist.} \end{cases}}

Daraus folgt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_1^2(n) < n \qquad \text{ wenn } n > 2,}

und das hat zur Folge, dass der Collatz-Graph von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_1} nur den Kreis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1,2)} besitzt und dass die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_1} -Trajektorie zu jeder beliebigen Startzahl in diesen Kreis mündet.

Weil diese Argumentation ziemlich einfach ist, suchte Collatz weiter: Der Collatz-Graph der Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_2(n) = \begin{cases} n/2 & \text{wenn } n \text{ gerade ist,} \\ 2 n + 1 \quad & \text{wenn } n \text{ ungerade ist,} \end{cases}}

enthält keinen Kreis, da jede ungerade Zahl auf eine größere ungerade Zahl abgebildet wird, und die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_2} -Trajektorien daher alle gegen unendlich divergieren.

Der nächste Versuch ist die Collatz-Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C\colon\mathbb{N} \to \mathbb{N}, \quad C(n) = \begin{cases} n/2 & \text{wenn } n \text{ gerade ist,} \\ 3 n + 1 & \text{wenn } n \text{ ungerade ist.} \end{cases}}     (Folge A006370 in OEIS)

Zu dieser Funktion fand Collatz nur den „trivialen Kreis“ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1,4,2)} – er schrieb, er habe seine Ideen deshalb nicht veröffentlicht, weil er nicht beweisen konnte, dass der „triviale Kreis“ der einzige sei. Die Collatz-Vermutung ist in graphentheoretischer Formulierung die Vermutung, dass der Collatz-Graph von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} zusammenhängend ist.

Prinzipielles

Die Pfadlänge (Anzahl der Schritte) in Abhängigkeit von den Startzahlen von 1 bis 10.000

Für eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} -Trajektorie als Zahlenfolge kann man drei einander ausschließende Fälle unterscheiden:

  • die Folge endet im (1,4,2)-Zyklus,
  • die Folge wächst über alle Grenzen,
  • die Folge gerät in einen anderen Zyklus.

Die Vermutung besagt, dass nur der erste Fall eintritt, aber weder der zweite noch der dritte Fall konnte bisher ausgeschlossen werden. Es ist auch nicht bekannt, ob es nur endlich viele Zyklen geben kann.[28]

Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3 n + 1} für ungerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} stets gerade ist und somit die folgende Iteration immer die Division durch 2, wird statt der Collatz-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} meistens die etwas einfacher zu handhabende Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T\colon\mathbb{N} \to \mathbb{N}, \quad T(n) = \begin{cases} n/2 & \text{wenn } n \text{ gerade ist,} \\ (3 n + 1) / 2 & \text{wenn } n \text{ ungerade ist,} \end{cases}}     (Folge A014682 in OEIS)

verwendet, die also für ungerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} zwei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} -Iterationen auf einmal macht und den der Vermutung zufolge stets erreichten Zyklus von (1,4,2) auf (1,2) reduziert. Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -fache Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T^k} bildet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^k m} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^k m - 1} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3^k m - 1} ab, insbesondere gibt es für jeden beliebig großen Faktor Startwerte, die die wiederholte Abbildung mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} um mindestens diesen Faktor vergrößert. Die Collatz-Vermutung ist äquivalent zu der Vermutung, dass für alle ganzen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n > 1} eine ganze Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k > 0} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T^k(n) < n} existiert. Terras zeigte 1976, dass die asymptotische Dichte der ganzen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n > 1} , für die das zutrifft, existiert und gleich 1 ist.[15]

Berechnungen mit Computern ergaben:[29]

  • Alle positiven ganzen Zahlen bis 268 (ca. 2,95×1020) als Startwerte bestätigen die Vermutung (Stand Juli 2020).[30]
  • Hat die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} -Iteration noch einen anderen Zyklus als (1,2), dann muss dieser aus mindestens 10.439.860.591 Zahlen bestehen, davon mindestens 6.586.818.670 ungerade.[31]
  • Für unendlich viele positive ganze Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} sind mindestens 6,143 log n Iterationen mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} erforderlich, um 1 zu erreichen.[32] Stochastische Modelle sagen voraus, dass durchschnittlich (2 / log(4/3)) log n ≈ 6,952 log n Schritte benötigt werden und dass für mindestens die Hälfte aller Zahlen mindestens so viele Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} -Iterationen erforderlich sind.
  • Für genügend große Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ist die Anzahl der positiven ganzen Zahlen kleiner oder gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} , die als Startwert die Vermutung bestätigen, mindestens Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X^{0{,}84}} .[33]
Die Pfadlänge (Anzahl der Schritte) in Abhängigkeit von den Startzahlen von 1 bis 100.000 (Erweiterung vom oberen Bild)

Terence Tao zeigte 2019, dass die Collatz-Vermutung für „fast alle“ natürlichen Zahlen „fast“ zutrifft (das heißt, man endet mit der Collatzfolge „nahe“ 1, wobei die Schranke für die Nähe vom Startwert N abhängt).[25][26] Beispielsweise folgt aus Taos Satz, dass mindestens 99 Prozent der natürlichen Zahlen bis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 10^{24}} , mit denen man die Collatzfolge startet, einen Endwert erreichen, der unter 200 liegt. Tao benutzte dabei Methoden, die er zuvor in der Theorie partieller Differentialgleichungen angewandt hatte, indem er statistisch eine Auswahl von Anfangswerten sampelte und dann das „Langzeitverhalten“ des Ensembles unter der Collatztransformation untersuchte.

Syracuse-Funktion

Die Syracuse-Funktion (benannt nach der Syracuse University in New York) ist eine mit der Collatz-Funktion verwandte Funktion. Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\in\mathbb{N}} , falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} eine ungerade Zahl ist, dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3n+1} gerade und besitzt eine Primfaktorzerlegung der Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^{a}p_1^{e_1}\cdots p_s^{e_s}=2^{a}k}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\in\mathbb{N}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} die größte ungerade Zahl ist, welche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3n+1} ohne Rest teilt. Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\mathbb{N}+1:=\{1,3,5,\dots\}} die Menge der ungeraden Zahlen, dann ist die Syracuse-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}:2\mathbb{N}+1\to 2\mathbb{N}+1} die Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}(n):=\frac{3n+1}{2^{a}}=k.}

Beispielsweise gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}(3)=5} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}(5)=1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}(7)=11} .

Für eine Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M\in\mathbb{Z}} sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_p(M)} die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} -Bewertung, das heißt die größte Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} , so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p^a\mid M} , mit der Konvention Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_p(0)=+\infty} . Dann lässt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}(n)} auch wie folgt ausdrücken

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}(n):=\frac{3n+1}{2^{\nu_2(3n+1)}}.}

Analog zur Collatz-Funktion lässt sich nun auch der Syracuse-Orbit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}^{\mathbb{N}}} und sein Minimal-Element Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}_{min}^{\mathbb{N}}} definieren.

Die Syracuse-Funktion spielt eine zentrale Rolle in Taos Beweis.

Teillösung von Tao

2019 bewies Tao folgenden Satz:[26]

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f:\mathbb{N}+1\to\mathbb{R}} eine Funktion mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim\limits_{N\to \infty}f(N)=+\infty} . Dann gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Col}^{\mathbb{N}}_{min}(N)<f(N)} für fast alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N\in\mathbb{N}+1} .

Tao nützte folgende Notation für die natürlichen Zahlen:

  • mit der Null als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}:=\{0,1,2,\dots\}}
  • ohne Null als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{N}+1:=\{1,2,\dots\}}
  • an ungerader Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\mathbb{N}+1:=\{1,3,5,\dots\}}

Die Bezeichnung fast alle bezeichnet eine Eigenschaft bezüglich der logarithmischen Dichte. Eine schwächere Form als die asymptotische Dichte.

Erläuterungen

Logarithmische Dichte:

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R\subset \mathbb{N}+1} eine nicht leere endliche Teilmenge. Wir definieren die Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{Log}(R)} , welche Werte in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} annimmt und der logarithmischen Gleichverteilung folgt, das heißt, für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\subset\mathbb{N}+1} gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{P}(\mathbf{Log}(R)\in A)=\frac{\sum_{N\in A\cap R}\frac{1}{N}}{\sum_{N\in R}\frac{1}{N}}.}

Die logarithmische Dichte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\subset\mathbb{N}} ist dann definiert als der Grenzwert

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim\limits_{x\to\infty}\mathbb{P}(\mathbf{Log}(\mathbb{N}+1\cap [1,x])\in A),}

sofern dieser existiert.

Die logarithmische Dichte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} ist somit die Wahrscheinlichkeit, dass sich der Grenzwert der Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{Log}(\mathbb{N}+1\cap [1,x])} in der Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} befindet.

Beispiele:

  • Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A:=\{2,4,6,8,10\dots\}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R_{x}:=\mathbb{N}+1\cap [1,x]} . Dann ist
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim\limits_{x\to\infty}\mathbb{P}(\mathbf{Log}(R_x)\in A)=\lim\limits_{x\to\infty}\frac{\sum_{N\in A\cap R_x}\frac{1}{N}}{\sum_{N\in R_x}\frac{1}{N}}=\frac{\sum_{N\in A}\frac{1}{N}}{\sum_{N\in \mathbb{N}+1}\frac{1}{N}}=\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}+\cdots}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots}=\frac{1}{2}}

Fast alle:

Eine Eigenschaft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(N)} gilt für fast alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N\in \mathbb{N}+1} , falls

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim\limits_{x\to\infty}\mathbb{P}(P(\mathbf{Log}(\mathbb{N}+1\cap [1,x])))=1.}

In Worten ausgedrückt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(N)} gilt in einer Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N\subset \mathbb{N}+1} mit logarithmischer Dichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1} .

Beweis-Idee

Der Satz wird für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}^{\mathbb{N}}_{min}(N)} bewiesen und der Fall für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Col}^{\mathbb{N}}_{min}} folgt daraus, denn es gilt[26]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Col}^{\mathbb{N}}_{min}(N)=\operatorname{Syr}^{\mathbb{N}}_{min}(N/2^{\nu_2(N)})} .

Wir definieren:

  • Für ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\in\mathbb{N}+1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in\mathbb{R}} die affine Abbildung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Aff}_{a}(x):=\tfrac{3x+1}{2^a}.}
  • Für ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -Tupel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a_1,\dots,a_n)\in(\mathbb{N}+1)^n} die Komposition
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Aff}_{(a_1,\dots,a_n)}(x):=\operatorname{Aff}_{a_n}(\operatorname{Aff}_{a_{n-1}}(\dots(\operatorname{Aff}_{a_1}(x))\dots))} .
  • Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -Syracuse-Bewertung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{a}^{(n)}(N)\in(\mathbb{N}+1)^n} als
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{a}^{(n)}(N):=\left(\nu_2(3N+1),\nu_2(3\operatorname{Syr}(N)+1),\dots,\nu_2(3\operatorname{Syr}^{n-1}(N)+1)\right).}

Daraus folgt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}(N)=\operatorname{Aff}_{\nu_2(3N+1)}(N)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}^{n}(N)=\operatorname{Aff}_{\vec{a}^{(n)}(N)}(N)} .

Weiter definieren wir die geometrische Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Geom}(\mu)} mit Erwartungswert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu>1} , so dass für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\in\mathbb{N}+1} gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{P}(\operatorname{Geom}(\mu) = a)=\frac{1}{\mu}\left(\frac{\mu-1}{\mu}\right)^{a-1}.}

Für ein zufälliges Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N\in 2\mathbb{N}+1} kann die Anzahl, wie oft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3N+1} durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2} geteilt werden kann, als geometrische Zufallsvariable mit Erwartungswert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2} interpretiert werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{P}(\operatorname{Geom}(2)=a)=2^{-a}.}

Es lässt sich folgende Heuristik herleiten: Falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} eine spezielle große, ungerade Zahl ist und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\ll \log N} (bedeutet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} ist viel kleiner als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \log N} ), dann verhält sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{a}^{(n)}(N)} wie die Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Geom}(2)^n} . Genauer: Definiere die diskrete totale Variation zweier Zufallsvariablen auf einer diskreten Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_{TV}(X,Y):=\sum\limits_{r\in R}|\mathbb{P}(X=r)-\mathbb{P}(Y=r)|.}

Nun lässt sich eine obere Schranke für die totale Variation von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{a}^{(n)}(N)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Geom}(2)^n} finden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_{TV}\left(\vec{a}^{(n)}(N),\operatorname{Geom}(2)^n\right)\ll 2^{-c_1 n},}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_1>0} eine Konstante bezeichnet. Da man nun sehr viel über die Verteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{a}^{(n)}(N)} weiß, lassen sich endliche Stoppzeiten für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Syr}^{\mathbb{N}}} herleiten.

Darstellung im Dualsystem

Da eine Division und Multiplikation von natürlichen Zahlen im Dualsystem besonders einfach durchzuführen ist, kann die Collatz-Funktion auch als eine abstrakte Maschine verstanden werden, die Zeichenketten von Bits verarbeitet.

Die Maschine wendet die folgenden drei Regeln auf eine beliebige ungerade Zahl an, bis schließlich nur die Eins übrig bleibt:

  1. Füge rechts an die Binärzahl eine Eins an. Das ergibt 2n + 1.
  2. Addiere die Zahl aus dem ersten Schritt zur ursprünglichen Zahl. Das ergibt dann n + 2n + 1 = 3n + 1.
  3. Entferne alle Nullen am rechten Rand der neuen Zahl. Das entspricht so vielen Divisionen durch 2, bis das Resultat wieder eine ungerade Zahl ist.

Beispiel

Man startet mit der dezimalen 7 (binär 111). Der resultierende Collatz-Orbit lautet dann:

         111
        1111
       10110
      10111
     100010
    100011
    110100
   11011
  101000
 1011
10000

Grundlegende Eigenschaften der Orbits

Betrachtet man bei der ersten Anwendung der Collatz-Funktion nur die ungeraden Zahlen, kann man sehr leicht einige einfache Eigenschaften dieser Abbildung zeigen.

Ungerade natürliche Zahlen haben bei einer Division durch 4 entweder den Rest 1 oder den Rest 3. Die ungeraden natürlichen Zahlen lassen sich so in zwei disjunkte Teilmengen aufteilen. Die eine Teilmenge der ungeraden Zahlen sind die Zahlen der Reihe 4n+1 mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \in \mathbb{N}_0} . Die andere Teilmenge sind die Zahlen der Reihe 4n+3 mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \in \mathbb{N}_0} . Wendet man nun auf die Zahlen der ersten Reihe die Collatz-Funktion an, erhält man die Zahlen der Reihe 12n+4. Da es sich bei diesen Zahlen immer um gerade Zahlen handelt, kann die Collatz-Funktion erneut angewendet werden. Die Zahlen der Reihe 12n+4 werden also auf die Zahlen der Reihe 6n+2 abgebildet und diese dann auf die Zahlen der Reihe 3n+1. Durch elementare Rechnungen kann man nun die folgenden allgemeinen Eigenschaften der Orbits beweisen:

  • Beschränkt man sich auch bei den Ergebniszahlen auf die ungeraden natürlichen Zahlen, so sind diese Zahlen nach den ersten zwei Anwendungen der Collatz-Funktion (zwei Iterationen) weder durch 2 noch durch 3 teilbar.
  • Die ungeraden Zahlen der Reihe 4n+1 mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \in \mathbb{N}_0} werden nach drei Iterationen auf die kleineren Zahlen der Reihe 3n+1 abgebildet.
  • Die Zahlen der Reihe 4n+3 mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \in \mathbb{N}_0} werden in den zwei folgenden Iterationen auf die größeren und ungeraden Zahlen der Reihe 6n+5 abgebildet. Nach zwei weiteren Iterationen werden diese Zahlen dann auf die Zahlen der Reihe 9n+8 abgebildet. Die Zahlen der Reihe 9n+8 sind abwechselnd gerade und ungerade.
  • Die Zahlen der Reihe 8n+3 mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \in \mathbb{N}_0} werden nach fünf Iterationen auf die Zahlen der Reihe 9n+4 abgebildet
  • Aufgrund der oben genannten Eigenschaften ist es bei einer Überprüfung der Collatz-Vermutung für alle natürlichen Zahlen unterhalb einer Schranke M mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M \in \mathbb{N}} hinreichend, sich auf die Zahlen der Reihe 4n+3 ohne die Zahlen der Reihe 6n+5 und 9n+4, die kleiner oder gleich M sind, zu beschränken.

Verallgemeinerungen

Für das auf alle ganzen Zahlen als Startwerte ausgeweitete Collatz-Problem gibt es außer dem (1,4,2)-Zyklus noch mindestens vier weitere Zyklen:

(0),
(−1, −2),
(−5, −14, −7, −20, −10)  und
(−17, −50, −25, −74, −37, −110, −55, −164, −82, −41, −122, −61, −182, −91, −272, −136, −68, −34).

Die drei letzten Zyklen mit positiven statt negativen Vorzeichen entstehen auch mit der Definition Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C(n)=3n-1} statt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C(n)=3n+1} für ungerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} . Alle Startwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |n|<10^8} enden in einem der bekannten Zyklen.[34]

Marc Chamberland definierte eine stetige Funktion, welche die diskrete Collatz-Folge auf den Bereich der reellen Zahlen erweitert.[35] Simon Letherman, Dierk Schleicher und Reg Wood betrachteten Funktionen im Bereich der komplexen Zahlen als Erweiterung.[36] Allgemeine Vermutung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C(n)=3n+3^x} für ungerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} endet immer in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (4\cdot3^x, 2\cdot 3^x, 1\cdot3^x)} und besitzt nur diesen einen Zyklus.

Betrachtet man das analoge (5n+1)-Problem, so liefern stochastische Modelle ein ganz anderes Verhalten: Fast alle Iterierten sollten divergieren, was durch Computersimulation bestätigt wird. Es ist aber ein offenes Problem zu beweisen, dass auch nur ein Orbit des (5n+1)-Problems tatsächlich divergiert.[37]

John Conway betrachtete 1972[14] verallgemeinerte (3n+1)-Folgen und zeigte, dass sie universale Turingmaschinen simulieren können (von ihm in der Programmiersprache FRACTRAN verallgemeinert). Außerdem zeigte er, dass ein bestimmtes Entscheidungsproblem unlösbar ist, das danach fragt, ob ein Eingangswert für die Iteration, der eine Potenz von 2 ist, zu einem iterierten Wert führt, der ebenfalls eine Potenz von 2 ist (das Collatz-Problem lässt sich auch so formulieren, dass für beliebige natürliche Zahlen als Input die Iterierte schließlich auf eine Potenz von 2 führt).

In ihrer 2020 veröffentlichten Arbeit analysieren Sultanow, Koch und Cox das Collatz-Problem aus graphentheoretischer Sicht.[38] Sie betrachten Zyklen für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3n+1} und die verallgemeinerte Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle kn+1} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \in \N_{>0}} . Das Dokument beinhaltet eine Liste bekannter Zyklen und leitet daraus Bedingungen für deren Auftreten in Collatz-Sequenzen ab.

Literatur

  • Jeffrey C. Lagarias: The 3x+1 problem and its generalizations, The American Mathematical Monthly 92, Januar 1985, S. 3–23 (englisch; 1986 mit dem Lester-R.-Ford-Preis ausgezeichnet; bei MathDL; beim CECM; Zentralblatt-Rezension)
  • Günther J. Wirsching: The dynamical system generated by the 3n+1 function, Springer-Verlag, Berlin 1998, ISBN 3-540-63970-5 (englisch; revidierte Version der Habilitationsschrift von 1996; Zentralblatt-Rezension)
  • Richard K. Guy: E16. The 3x+1 problem und E17. Permutation sequences in Unsolved problems in number theory (3. Auflage), Springer-Verlag, New York 2004, ISBN 0-387-20860-7, S. 330–336 und S. 336–337 (englisch; Zentralblatt-Rezension)
  • Jeffrey C. Lagarias: The 3x+1 problem: An annotated bibliography (1963–1999) (sorted by author), arxiv:math/0309224 [math.NT], 2003–2011 (englisch)
  • Jeffrey C. Lagarias: The 3x+1 problem: An annotated bibliography, II (2000–2009), arxiv:math/0608208 [math.NT], 2006–2012 (englisch)
  • Jeffrey C. Lagarias (Hrsg.): The ultimate challenge: The 3x+1 problem, American Mathematical Society, Providence RI 2010, ISBN 978-0-8218-4940-8 (englisch; Zentralblatt-Rezension)

Weblinks

Wikibooks: Collatzfolgen und Schachbrett – Lern- und Lehrmaterialien
Commons: Collatz-Problem – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. a b Lagarias: The 3x+1 problem: An overview, 2010, S. 16 „Mathematics is not yet ready for such problems.“ und S. 24 „Hopeless. Absolutely hopeless.“ (englisch)
  2. a b H. S. M. Coxeter: Cyclic sequences and frieze patterns: The fourth Felix Behrend memorial lecture, Vinculum 8, 1971, S. 4–7 (englisch); Nachdruck mit Kommentar in Lagarias (Hrsg.): The ultimate challenge: The 3x+1 problem, 2010, S. 211–218 (Vermutung auf S. 214; Zentralblatt-Rezension)
  3. PHS: The Times Diary. Sums of money, The Times 61228, 17. Juli 1982, S. 8 und The Times Diary. Aftermath, The Times 61320, 25. August 1982, S. 8
  4. a b C. Williams, B. Thwaites, A. van der Poorten, W. Edwards, L. Williams: Ulam’s conjecture continued again, PPC Calculator Journal 9, September 1982, S. 23–24 (englisch)
  5. Bryan Thwaites: Two conjectures, or how to win £1100, The Mathematical Gazette 80, März 1996, S. 35–36 (englisch)
  6. a b Bryan Thwaites: Try to Win auf nrich, 10. März 1998 (englisch)
  7. Lagarias: The 3x+1 problem and its generalizations, 1985, S. 4 (englisch)
  8. Collatz conjecture Prize 120 million JPY. 7. Juli 2021, abgerufen am 10. September 2021 (amerikanisches Englisch).
  9. a b Richard K. Guy: Don’t try to solve these problems! American Mathematical Monthly 90, 1983, S. 35–41 (englisch, doi:10.1080/00029890.1983.11971148; Zentralblatt-Rezension); Nachdruck in Lagarias (Hrsg.): The ultimate challenge: The 3x+1 problem, 2010, S. 231–239
  10. Darren Glass: MAA Review zu Lagarias (Hrsg.): The ultimate challenge: The 3x+1 problem, 2010, MathDL, 31. März 2011 (englisch)
  11. a b Lagarias: The 3x+1 problem: An overview, 2010, S. 5 (englisch).
  12. ITEM 133 (Schroeppel, Gosper, Henneman & Banks) aus M. Beeler, R. W. Gosper, R. Schroeppel: HAKMEM, MIT AI Memo 239, 29. Februar 1972 (englisch).
  13. Martin Gardner: Mathematical Games, Scientific American 226, Juni 1972, S. 114–118 (englisch); Nachdruck mit Kommentar in Wheels, life, and other mathematical amusements, W. H. Freeman and Company, New York 1983, ISBN 0-7167-1588-0, S. 196–197 und 203–204.
  14. a b J. H. Conway: Unpredictable Iterations in: Proceedings of the 1972 Number Theory Conference. University of Colorado, Boulder, Colorado, 1972, S. 49–52 (englisch; Zentralblatt-Rezension); Nachdruck in Lagarias (Hrsg.): The ultimate challenge: The 3x+1 problem, 2010, S. 219–223.
  15. a b Riho Terras: A stopping time problem on the positive integers (PDF, 632 kB; 24. Oktober 1974), Acta Arithmetica 30, 1976, S. 241–252 (englisch; Zentralblatt-Rezension)
    dazu Riho Terras: On the existence of a density (PDF, 132 kB; 27. Juli 1978), Acta Arithmetica 35, 1979, S. 101–102 (englisch; Zentralblatt-Rezension).
  16. Riho Terras: A stopping time problem on the positive integers. In: Acta Arithmetica. Band 30, 1976, S. 241–252.
  17. Lagarias: The 3x+1 problem and its generalizations, 1985 (englisch).
  18. Lagarias: The 3x+1 problem and its generalizations, 1985, S. 3 (englisch).
  19. Guy: E17. Permutation sequences, 2004 (englisch).
  20. Bryan Thwaites: My conjecture, Bulletin of The Institute of Mathematics and its Applications 21, März/April 1985, S. 35–41 (englisch; Zentralblatt-Rezension).
  21. Lothar Collatz: Über die Entstehung des (3n+1)-Problems, Journal of Qufu Normal University Natural Science Edition 12 No. 3, 1986, S. 9–11 (chinesische Übersetzung aus dem Deutschen von Zhi-Ping Ren); On the motivation and origin of the (3n+1)-problem in Lagarias (Hrsg.): The ultimate challenge: The 3x+1 problem, 2010, S. 241–247 (englische Übersetzung aus dem Chinesischen).
  22. Douglas R. Hofstadter: Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, New York 1979, ISBN 0-465-02685-0, S. 400–402 (englisch).
  23. Brian Hayes: Computer recreations: On the ups and downs of hailstone numbers (PDF; 1,1 MB), Scientific American 250, Januar 1984, S. 10–16 (englisch).
  24. A density estimate for the3x+ 1problem. Abgerufen am 23. Dezember 2020.
  25. a b Kevin Hartnett: Mathematician proves huge result on ‘dangerous’ problem, Quanta Magazine, 11. Dezember 2019 (englisch).
  26. a b c d Terence Tao: Almost all orbits of the Collatz map attain almost bounded values. 2019, arxiv:1909.03562 (englisch).
  27. Günther J. Wirsching: Über das 3n+1 Problem, Elemente der Mathematik 55, November 2000, doi:10.5169/seals-5637, S. 142–155 (Zentralblatt-Rezension)
  28. Lagarias: The 3x+1 problem: An overview, 2010, S. 22 (englisch).
  29. Lagarias: The 3x+1 problem: An overview, 2010, S. 16–17 (englisch).
  30. Eric Roosendaal: On the 3x + 1 problem. In: EricR.nl. 20. Juli 2020, abgerufen am 27. Juli 2020 (englisch).
  31. Shalom Eliahou: The 3x+1 problem: new lower bounds on nontrivial cycle lengths, Discrete Mathematics 118, August 1993, S. 45–56 doi:10.1016/0012-365X(93)90052-U (englisch; Resultat unter Verwendung der Gültigkeit der Vermutung bis 20×258; Zentralblatt-Rezension).
  32. David Applegate, Jeffrey C. Lagarias: Lower bounds for the total stopping time of 3x+1 iterates, Mathematics of Computation 72, April 2003, S. 1035–1049 (englisch; Zentralblatt-Rezension).
  33. Ilia Krasikov, Jeffrey C. Lagarias: Bounds for the 3x + 1 problem using difference inequalities, Acta Arithmetica 109, 2003, S. 237–258 (englisch; Zentralblatt-Rezension).
  34. Guy: E16. The 3x+1 problem, 2004, S. 332 (englisch)
  35. Marc Chamberland: A continuous extension of the 3x+1 problem to the real line (PDF; 159 kB), Dynamics of continuous, discrete and impulsive dynamical systems 2, 1996, S. 495–509 (englisch; Zentralblatt-Rezension)
  36. Simon Letherman, Dierk Schleicher, Reg Wood: The 3n+1-problem and holomorphic dynamics, Experimental Mathematics 8, 1999, S. 241–251 (englisch)
  37. Lagarias: The 3x+1 problem: An overview, 2010, S. 11 und S. 22
  38. Eldar Sultanow, Christian Koch, Sean Cox: Collatz Sequences in the Light of Graph Theory. doi:10.25932/publishup-48214 (PDF, 1354 kB) Universität Potsdam 2020.