Diskussion:Zentripetalkraft
Füge neue Diskussionsthemen unten an:
Klicke auf , um ein neues Diskussionsthema zu beginnen, und unterschreibe deinen Beitrag bitte mit oder--~~~~
.Zum Archiv |
Wie wird ein Archiv angelegt? |
Autoarchiv
Damit verschwinden immer wieder a) unerledigte Kritikpunkte, b) Diskussionen, die nach dem Lesen vielleicht verhindern, daß die gleiche Geschichte zum zehnten mal wieder auftaucht. Deswegen entfernt. Bei Bedarf vielleicht ein Autoarchiv-Erledigt einbauen. -- Maxus96 21:37, 30. Mai 2010 (CEST)
Bild
Kann nicht einmal jemand, der sich mit SVG auskennt, die Fehler dieses Bildes beseitigen (Tippfehler, missverständlicher Pfeil bis zum Mittelpunkt)? -- 79.206.247.133 14:36, 12. Mai 2010 (CEST)
- Der Pfeil über den Formelzeichen und im Bild weist die bezeichnete Kraft als Gerichtete Kraft bzw. Größe aus, im Gegensatz zur ungerichteten Kraft bzw. Größe. --JARU Postfach Feedback? 19:05, 7. Feb. 2011 (CET)
Bezugssystem
ein Bezugssystem kann nicht fest mit einem Massepunkt verbunden sein.-- Wruedt (Diskussion) 07:09, 15. Apr. 2012 (CEST)
- und warum nicht? Man kann eine beliebige Trajektorie x(t) in einem Inertialsystem definieren und diesen als Ursprung eines beliebig gedrehten Dreibeins auffassen. Nimmt man nun als Trajektorie die Trajektorie eines Massepunktes, so ist das Bezugssystem fest verbunden mit dem Massepunkt. In der Weise, dass zwischen Massepunkt und Ursprung keine Relativbeschleunigung, keine Relativgeschwindigkeit und kein Abstand besteht.--svebert (Diskussion) 14:15, 15. Apr. 2012 (CEST)
- Ein Massepunkt hat per Def. keine Ausdehnung, somit auch keine Orientierung. Also kann zwar der Massepunkt im Ursprung eines Bezugssystems liegen, die Orientierung bleibt aber offen. Man müßte hier zusätzliche Vereinbarungen treffen. Bei Körpern, die eine Ausdehnung besitzen, kann die Orientierung an Hand der Geometrie festgelegt/definiert werden.-- Wruedt (Diskussion) 06:27, 16. Apr. 2012 (CEST)
- Arbeitest du neuerdings auf allgemeinen Mannigfaltigkeiten, oder was ist dein Problem?
- Nimm einfach deine Hand, Zeige-Finger ist das erste „Bein“, Daumen und Mittelfinger die beiden anderen Beine. Nun bewegst du deine Hand Wild durch den Raum (Trajektorie). Nun hast du ein mit einem Massepunkt (idealisierter Punkt in deiner Hand) verbundenes Bezugssystem, dass sich mitdreht usw. Übrigens: Auch ein Massepunkt kann Drehimpuls haben und dann kannst du ausrechnen wie lange er mit welcher Winkelgeschwindigkeit rotieren muss, um das Dreibein wieder in eine bestimmte Ausgangsposition zu legen.
- Falls du das mathematischer haben willst, dann suche mal nach „begleitendes Dreibein“ (Frenetsche Formeln)--svebert (Diskussion) 11:25, 16. Apr. 2012 (CEST)
- Das würde ich gerne nachrechnen, wenn du noch verrätst, wie man den Drehimpuls eines Massepunktes berechnet. :| -- Pewa (Diskussion) 12:20, 16. Apr. 2012 (CEST)
- Ich denke es gibt diverse Möglichkeiten ein "festverbundenes Bezugssystem" eines Massepunktes zu definieren.
- Einfachster Fall: Ursprung des beschl. Bezugssystems ist Trajektorie des Teilchens, aber x',y',z' Achsen sind immer parallel zu x,y,z Achsen im Inertialsystem. In diesem Fall würde die Trägheitskraft nicht immer in eine bestimmte Richtung im „fest verbundenen Bezugssystem“ zeigen.
- Zum Drehimpuls: Ich meinte das so: Man stelle sich ein Massepunkt als Elektron vor, das ja bekanntlich einen Eigendrehimpuls trägt und dieser zeigt im Inertialsystem in eine bestimmte Richtung .
- Zugleich hat das Elektron einen Bahndrehimpuls , sobald es z.B. auf einer Kreisbahn fliegt. Der Gesamtdrehimpuls ist erhalten, also .
- Nun wirkt auf das Elektron ein Moment M(t) über die Zeit t (um irgendwelche beliebigen Kurven zu erzeugen). Der Bahndrehimpuls des Elektrons wird also verändert, daher muss sich der Eigendrehimpuls des Elektrons ändern:
- . Daraus berechnet sich der Eigendrehimpuls zu: .
- Nun kann man halt sagen, dass ich das eine "Bein" meines Dreibeins in Richtung von S ausrichte und dieses S ist aus Inertialsystemsicht nicht immer parallel zu einer bestimmten Achse.--svebert (Diskussion) 17:03, 16. Apr. 2012 (CEST)
- Ein Elektron ist kein Massepunkt. Man kann zwar ein Bezugssystem mit einem Massepunkt "verbinden", aber man kann dadurch die Orientierung des Bezugssystems nicht definieren, wie bei einem Körper mit räumlicher Ausdehnung. -- Pewa (Diskussion) 13:18, 2. Feb. 2013 (CET)
- Das würde ich gerne nachrechnen, wenn du noch verrätst, wie man den Drehimpuls eines Massepunktes berechnet. :| -- Pewa (Diskussion) 12:20, 16. Apr. 2012 (CEST)
- Ja, die Orientierung bleibt offen, und? Sie spielt auf Grund der physikalischen Symmetrien keine Rolle. OBdA wird einfach eine ausgewählt, sinnvollerweise so, dass die Gleichungen möglichst elegant bleiben. -- 89.12.185.176 09:00, 13. Feb. 2016 (CET)
- Ein Massepunkt hat per Def. keine Ausdehnung, somit auch keine Orientierung. Also kann zwar der Massepunkt im Ursprung eines Bezugssystems liegen, die Orientierung bleibt aber offen. Man müßte hier zusätzliche Vereinbarungen treffen. Bei Körpern, die eine Ausdehnung besitzen, kann die Orientierung an Hand der Geometrie festgelegt/definiert werden.-- Wruedt (Diskussion) 06:27, 16. Apr. 2012 (CEST)
"Genau genommen"
Zitat: "Genau genommen ist die Erdbahn wie die Bahnen aller Planeten keine Kreisbahn, sondern eine Ellipsenbahn."
Soweit ich mich erinnere ist "genau genommen" die Bahn auch nur annähernd eine Ellipsenbahn ...
verwirrend…
1. Die Zentripetalkraft ist nach meiner Einschätzung der Anteil der resultierenden Kraft (also aller Zwangs- (z.B. Seilkraft) und eingeprägten/äußeren Kräfte (z.B. coulombsche Reibkraft)), der orthogonal auf dem Geschwindigkeitsvektor steht. Die Aussage, dass die Zentripetalkraft grundsätzlich eine äußere Kraft ist (wie im Artikel geschehen), ist damit nicht vereinbar. Als Konsequenz dessen, kann man sich natürlich die Frage stellen, warum man dem ganzen überhaupt einen Namen gibt… 2. Die Zentripetalkraft stellt keine Abkürzung für das Produkt von Masse und Zentripetalbeschleunigung dar. Wegen der Terminologie könnte man aber genau dieses hineininterpretieren. Darauf sollte meiner Meinung nach im Artikel hingewiesen werden. 141.23.91.231 17:16, 28. Okt. 2016 (CEST)
- Das finde ich nun zunächst selbst etwas verwirrend, und schlage als Klärungsversuch vor: ad 1. Das Wort "äußere" wird aus dem 1. Satz gestrichen (es war dort schon immer überflüssig, und die Kraft auf einen Körper ist immer die gesamte, also die resultierende Kraft). ad 2. Wo steht was von "Abkürzung"? Der letzte Satz der Einleitung beschreibt (richtig), wie man die Zp-Kraft aus anderen Daten berechnet. - Und: Konkrete Formulierungsvorschläge sind willkommen!! --jbn (Diskussion) 21:56, 28. Okt. 2016 (CEST)
Mathematische Herleitung
Nun denn, Bleckneuhaus: Was stört Dich an meiner Bearbeitung, die Du gestern rückgängig gemacht hast? --Frīheidasliova (FRĀGĀ) 15:42, 18. Feb. 2017 (CET)
- Deine in der QS-Box gegebene Begründung des angeblichen Mangels ist völlig daneben:
- "Man hat eine Graphik, wo die Vektorpfeile der Geschwindigkeiten v1 und v2 gleich lang sind, und folgert daraus, dass die Geschwindigkeiten gleich groß sein müssen? Also diese Argumentation ist doch sehr schwach."
- Daraus, dass in der "Graphik" drei Pfeile gleich groß sind, wird hier gar nichts gefolgert. Dass sie gleich groß sind, geht für v_1 = v_1' aus den Eigenschaften der Parallelverschiebung hervor, für v_1=v_2 aus der im Text drei kurze Sätze vorher genannten Annahme der konstanten Geschwindigkeit. Diese Annahme muss hier nicht noch einmal extra angerufen werden. - Ich sehe aber gerade, dass mein revert den - mit Verlaub: unsinnigen - QS-Text gar nicht entfernt hat. Machst Du das bitte selber? Oder bist Du noch nicht überzeugt? --jbn (Diskussion) 17:14, 18. Feb. 2017 (CET)
- Ruhig Brauner, ruhig... Jeder kann sich mal vertun, in dem Fall war ich das wohl: Die Annahme der konstanten Geschwindigkeit habe ich vollkommen übersehen. Aber was ist mit der Ähnlichkeit; Allein aus der Konstanz der Geschwindigkeit folgt ja nun noch nicht die Ähnlichkeit der Dreiecke. Es fehlte noch die Information für den Leser, der ehrlich gesagt vor allem anfangs Schwierigkeiten hat, dieser Argumentation zu folgen, dass die von den Vektoren und dem Radius umgebenden Winkel gleich groß sind. Die Box nehme ich gerne wieder heraus. Freundliche Grüße --Frīheidasliova (FRĀGĀ) 19:11, 18. Feb. 2017 (CET)
- Die von Dir vermisste Information ist durch die Gleichung ausgedrückt, die genau da steht, wo Du sie haben willst. Vielleicht ist nicht so allgemein klar, dass das Symbol : den Winkel zwischen den im folgenden bezeichneten Geradenstücken meint? Oder warum die Gleichung gilt? Ich hab beides gerade etwas näher ausgeführt, zum Wohle des Artikels, wie ich finde, aber mehr dazu gehört mE nicht hierher, denn es ist elementare Geometrie. --jbn (Diskussion) 21:52, 18. Feb. 2017 (CET)
- Falls Du es nicht wusstest: Ich habe diese Gleichung gestern hinzugefügt; vorher gab es die Information, dass die Winkel gleich groß sind, gar nicht. Danke Dir für Deine nähere Ausführung. Grüße --Frīheidasliova (FRĀGĀ) 20:33, 19. Feb. 2017 (CET)
- Dann haben wir das ja zusammen gut hingekriegt, finde ich. Wikipedia ist fantastisch! --jbn (Diskussion) 12:56, 20. Feb. 2017 (CET)
- Die Erweiterungen der Herleitung finde ich gut, bin aber über das 90°-Argument gestolpert. Deshalb habe ich mich daran gewagt, die Abbildung zu ergänzen und die Herleitung noch schärfer zu formulieren. Auch aufgrund der Anregungen von FranzR ist sie dann so geworden, wie es zur Zeit zu lesen ist. --TCBoyle (Diskussion) 13:37, 7. Sep. 2017 (CEST)
- Die Formulierung "mit gleichbleibendem Betrag der Geschwindigkeit auf einer Kreisbahn" erschien mir als Dopplung der Aussage über die Geschwindigkeit des Objekts, das sich ja schließlich auf einer Kreisbahn bewegen soll. Dies geht m. E. auch aus der Zeichnung hervor. Um die Fachtermini für Nicht-Physiker möglichst klein zu halten, habe ich den Begriff "Betrag" wieder entfernt. Sollte ein/e Leser/in an vektoriellen Betrachtungen interessiert sein, können die Zusammenhänge im anschließenden Abschnitt nachgelesen werden.--TCBoyle (Diskussion) 00:34, 18. Sep. 2017 (CEST)
- Äh, nein. Jeder von uns weiß wohl, wie das mit der gleichbleibenden Geschwindigkeit "gemeint" ist, aber nachdem die Geschwindigkeit als Größe mit Richtung schon in niedrigen Klassen eingeführt wird ist eine "Kreisbewegung mit konstanter Geschwindigkeit" ein "schwarzer Schimmel". Vielleicht sagt die Bahngeschwindigkeit (abgesehen vom Laienunverständlichen Linkziel) hier das aus, was du verbessern wolltest? Kein Einstein (Diskussion) 08:12, 18. Sep. 2017 (CEST)
- Ja, das trifft es besser, danke!--TCBoyle (Diskussion) 20:41, 18. Sep. 2017 (CEST)
- Äh, nein. Jeder von uns weiß wohl, wie das mit der gleichbleibenden Geschwindigkeit "gemeint" ist, aber nachdem die Geschwindigkeit als Größe mit Richtung schon in niedrigen Klassen eingeführt wird ist eine "Kreisbewegung mit konstanter Geschwindigkeit" ein "schwarzer Schimmel". Vielleicht sagt die Bahngeschwindigkeit (abgesehen vom Laienunverständlichen Linkziel) hier das aus, was du verbessern wolltest? Kein Einstein (Diskussion) 08:12, 18. Sep. 2017 (CEST)
- Dann haben wir das ja zusammen gut hingekriegt, finde ich. Wikipedia ist fantastisch! --jbn (Diskussion) 12:56, 20. Feb. 2017 (CET)
- Falls Du es nicht wusstest: Ich habe diese Gleichung gestern hinzugefügt; vorher gab es die Information, dass die Winkel gleich groß sind, gar nicht. Danke Dir für Deine nähere Ausführung. Grüße --Frīheidasliova (FRĀGĀ) 20:33, 19. Feb. 2017 (CET)
- Die von Dir vermisste Information ist durch die Gleichung ausgedrückt, die genau da steht, wo Du sie haben willst. Vielleicht ist nicht so allgemein klar, dass das Symbol : den Winkel zwischen den im folgenden bezeichneten Geradenstücken meint? Oder warum die Gleichung gilt? Ich hab beides gerade etwas näher ausgeführt, zum Wohle des Artikels, wie ich finde, aber mehr dazu gehört mE nicht hierher, denn es ist elementare Geometrie. --jbn (Diskussion) 21:52, 18. Feb. 2017 (CET)
- Ruhig Brauner, ruhig... Jeder kann sich mal vertun, in dem Fall war ich das wohl: Die Annahme der konstanten Geschwindigkeit habe ich vollkommen übersehen. Aber was ist mit der Ähnlichkeit; Allein aus der Konstanz der Geschwindigkeit folgt ja nun noch nicht die Ähnlichkeit der Dreiecke. Es fehlte noch die Information für den Leser, der ehrlich gesagt vor allem anfangs Schwierigkeiten hat, dieser Argumentation zu folgen, dass die von den Vektoren und dem Radius umgebenden Winkel gleich groß sind. Die Box nehme ich gerne wieder heraus. Freundliche Grüße --Frīheidasliova (FRĀGĀ) 19:11, 18. Feb. 2017 (CET)
Ich würde im ersten Abschnitt mit unterbringen, dass der Betrag der Ableitung der Geschwindigkeit einfach ist, womit für die ZP-Kraft dann sofort herauskommt. Und dem bschnitt die Überschrift "einfache HErleitung" geben. Den 2. Abschnitt ("Vektoriell.." ) halte ich für absoluten overkill und würde ihn weitgehend streichen. Mit kommt sofort die übliche Formel heraus. Bemerkungen dazu? --Bleckneuhaus (Diskussion) 16:22, 27. Jul. 2019 (CEST)
- Würd den Abschnitt ev. nicht komplett rauswerfen, aber straffen (omegax(omega x r) bei a_ZP halt ich für überflüssig. Aber die vektorielle Darstellung entspricht doch der üblichen Vorgehensweise in WP. Vom einfachen zum Allgemeinen. In der TM muss man fast immer vom allgemeinen Fall ausgehen.--Wruedt (Diskussion) 16:52, 27. Jul. 2019 (CEST)
- Ich meine auch nicht ersatzlos löschen, sondern die Vektorrechnung aufs nötige Normalmaß zu begrenzen. Frenet ist da überflüssig, Krümmung (wie bei Krümmung#Definitionen anfangs beschrieben) reicht vollkommen, auch für Raumkurven (s. etwa Torsion (Mathematik)). --Bleckneuhaus (Diskussion) 11:38, 28. Jul. 2019 (CEST)
- Bin da einigermaßen schmerzfrei. Wenn ich aber andere Artikel sehe, die "maßlos" überfrachtet werden, z.B. bei Winkelgeschwindigkeit#Winkelgeschwindigkeitstensor (dass man das Kreuzprodukt durch eine Matrix-Multiplikation ersetzen kann, ist doch sicher in einem Mathe-Artikel erklärt), versteh ich den Minimalansatz nicht ganz. Aber wenn Du hier auf das Wesentliche kürzen möchtest, hab ich auch nichts dagegen.--Wruedt (Diskussion) 12:28, 28. Jul. 2019 (CEST)
- Ich meine auch nicht ersatzlos löschen, sondern die Vektorrechnung aufs nötige Normalmaß zu begrenzen. Frenet ist da überflüssig, Krümmung (wie bei Krümmung#Definitionen anfangs beschrieben) reicht vollkommen, auch für Raumkurven (s. etwa Torsion (Mathematik)). --Bleckneuhaus (Diskussion) 11:38, 28. Jul. 2019 (CEST)
Ich meinte, die Vektorrechnung aufs nötige Normalmaß zu begrenzen. Frenet ist da überflüssig, Krümmung (wie bei Krümmung#Definitionen anfangs beschrieben) reicht vollkommen, auch für Raumkurven (s. etwa Torsion (Mathematik)). Hier meine Idee: ______________________________________________________________________________________________________________________
Vektorielle Darstellung
Für einen Punkt, der sich auf einer beliebigen (glatten) Kurve im Raum bewegt, gibt es zu jedem Punkt der Bahn eine eindeutig bestimmte Schmiegkugel, die bis zur 3. räumlichen Ableitung mit der Bahnkurve übereinstimmt. Da der Geschwindigkeitsvektor die Richtung der Bahntangente angibt, bestimmt sie mit dem Ortsvektor des Punktes (vom Kugelmittelpunkt als Ursprung) die momentane Bahnebene. In dieser Ebene befindet sich der Punkt im betrachteten Moment auf einer Kreisbahn, wobei seine Winkelgeschwindigkeit auf der Ebene senkrecht steht und die für Kreisbahnen übliche Gleichung
erfüllt. Wenn der Punkt nicht in tangentialer Richtung beschleunigt wird, verschwindet die erste Ableitung von . Die Beschleunigung ist dann
- .
Der Beschleunigungsvektor zeigt zum Mittelpunkt, er gibt die Zentripetalbescheunigung an. Nach Einsetzen von ergibt sich
- .
____________________________________________________________________________________________________________________________________
Ich denke, das ist genauso exakt und für dem Normalleser wesentlich zugänglicher als der jetzige theoretische Bombast. --Bleckneuhaus (Diskussion) 11:38, 28. Jul. 2019 (CEST)
- Damit bin ich jetzt nicht einverstanden. Im IS gibt es zunächst mal kein omega, sondern eine Bahnkurve. Die 2-fache Ableitung des Ortsvektors führt wie aktuell bei a_z auf die klassische Formel a_Z=v^2/r. Das darf imo nicht unter den Tisch fallen. Die Formeln mit omega sind imo zweite Wahl.--Wruedt (Diskussion) 13:17, 28. Jul. 2019 (CEST)
- Die Formel mit omega, sollte z.B. beim Beispiel Auto in Kurve nicht angewandt werden, da omega in der Fahrdynamik bereits für die Drehgeschwindigkeit des Aufbaus um die Hochachse (Giergeschwindigkeit hier psiPunkt) reserviert ist. Diese unterscheidet sich von Deinem omega bei instationärer Fahrt durch den Schwimmwinkel (s. Einspurmodell a_y=v*(psiP-betaP)). Ergo die Formeln mit omega sollten im Zweifel eher weggelassen werden und nicht alleine hier rumstehen.--Wruedt (Diskussion) 13:37, 28. Jul. 2019 (CEST)
- Da kann ich Dir nun gar nicht folgen, abgesehen von dem ersten Punkt, dass ich Anschluss an die skalaren Formeln vergessen habe explizit hinzuschreiben. Die omega-Formeln sind übrigens weltweit die Standardform in diesem Bereich. Wir schreiben kein Buch über Fahrzeugdynamik, sondern für alle Welt. Wer in der Fahrzeugtechnik so bewandert ist, dass er über Deine Beispiele stolpern könnte, weiß auch, dass es dort spezielle Notationsvorschriften gibt, die sonst nirgends so eingehalten werden. Zumal mein Text nicht von einem Körper redet, sondern von einem Punkt. Wenn Dir die Winkelgeschwindigkeit, die es übrigens bei jeder Kreisbahn in jedem Bezugssystem gibt, zu sehr von Himmel fällt, dann guck mal in Winkelgeschwindigkeit, wie die allgemeine Definition lautet (die auch jeder Physiker so benutzt). - Bei vektorieller Schreibung die Formeln mit \omega wegzulassen - den Punkt verstehe ich überhaupt nicht. Nochmal: Wir schreiben kein Buch über Fahrzeugdynamik, sondern für alle Welt. --Bleckneuhaus (Diskussion) 14:37, 28. Jul. 2019 (CEST)
- Dann lass es bei deinem Teil, aber lass es bei omega x v. Dann ist man ja schon fertig und muss nicht nochmal umformen zu omegax(omega x r). Das ist aber auch nicht falsch. Es ist wie immer, man muss es nur richtig machen. Vielleicht auch eine Geschmacksfrage. Ich überlass dir die didaktisch beste Version.--Wruedt (Diskussion) 15:12, 28. Jul. 2019 (CEST)
- Tur mir leid, aber die jetzige Form ist wesentlich schlechter als die ursprüngliche. Im IS gibt es eine Bahnkurve die ev. abhhängig von der Wegstrecke parametriert ist. Den Ortsvektor kann man 2 mal ableiten dann kommt zur Beschleunigung (Primitivbeispiel: Klothoide in Parameterform 2mal abgeleitet erhält man: Krümmung*v^2 und ist schon fertig). Allgemeiner ist's etwas aufwändiger (Frenetsche Formeln). Man muss auch keinen zweiten Ursprung O vergeben, den es im IS ja schon gibt. Möchte deshalb wieder zurück auf die ursprüngliche Version.
- Das allermindeste wäre die Gleichung a=dv/dt bzw. a=d2r/dt^2 an den Anfang zu stellen. v ist normalerweise gegeben und muss nicht erst aus omega x r berechnet werden. Das ist ja erst die Vorstellung, dass man die Bewegung auch durch Drehung um eine Achse ersetzen kann. Das kann nicht als erstes kommen. Auch wenn wir kein Buch über Fahrzeugdynamik schreiben, so ist doch die Zentripetalbeschleunigung zu allererst eine Beschleunigung im IS. Da braucht's kein omega. Das man zur zweiten Ableitung und deren Komponente in radialer Richtung auch über eine angenäherte Kreisbewegung kommen kann, ist der zweite Schritt.--Wruedt (Diskussion) 08:42, 29. Jul. 2019 (CEST)
- Also ich will auf keinen Fall zu der alten Fassung zurück. Für welche Art von Lesern soll die denn interessant gewesen sein? Physiker und Normalleser, die zB von Zentrifugalkraft hierher geleitet wurden, brauchen hier keine Frenetschen Formeln, und rechnen tut eh niemand mit ihnen. Zur neuen Fassung: Wenn Du mal ein (fast) beliebiges Physikbuch aufschlägst, wirst Du das so finden. Dass man eine gekrümmte Bewegung im Inertialsystem als Stückchen einer Kreisbewegung auffassen kann, wobei \omega als die Geschwindigkeit der Richtungsänderung auftaucht (und, wenn man WILL; sogar auch im Grenzfall die geradlinige Bewegung - so wurde von Bernoulli die Abhängigkeit der Zf-Kraft vom Bezugssystem entdeckt), das gehört hier zum Grundrepertoire. Und was den angeblich ominösen 2. Ursprung angeht: Wie willst Du denn einen rotierenden starren Körper anders behandeln? Die dort benutzte Formel mit den 2 \omegas muss doch hier abgeleitet und begründet werden, wo denn sonst. --Bleckneuhaus (Diskussion) 11:51, 29. Jul. 2019 (CEST)
In starrer Körper gibt es keine 2 omegas. omega ist dort die Winkelgeschwindigkeit des starren Körpers. Der Rest steckt in . Das ganze ist aber dermaßen verschwurbelt und unnötig kompliziert dargestellt, dass das kaum einer versteht. Was ist Deine Motivation bei den letzten Änderungen. Will Du hier erklären? Was mich stört, ist dass die ursprüngliche Bedeutung von a_ZP als Beschleunigung im IS völlig verloren geht. Dabei ist in aller Regel v vorgegeben und muss nicht nochmal errechnet werden. Hätte mir einen etwas didaktischeren Zugang gewünscht. 1. 2te Ableitung des Ortsvektors im IS (der müsste jetzt \vec s lauten), 2. Approximation der Bahn durch den Krümmungskreis bzw. eine Drehung. Wie im Beispiel Klothoide kommt man dann natürlicherweise zuerst zu omega x v und dann ev zu omega x (omgega x r). Wobei r jetzt schon wieder erklärungsbedürftig ist, das r ja nicht mehr der Ortsvektor ist, in dem die Bahn ursprünglich mal beschrieben wurde. Notation ist halt doch machmal für was gut.--Wruedt (Diskussion) 12:58, 29. Jul. 2019 (CEST)
- Ich weiß nicht, was Du sagen willst. Nirgendwo steht in meinem Text was von 2 \omegas. v wird auch nicht errechnet, sondern ist vorgegeben und wird zur der Charakterisierung von omega durch die "für Kreisbahnen übliche Gleichung" so benutzt. In der nächsten Zeile ist die Bedeutung von a_Z durch dv/dt angegeben - was soll da von der "ursprünglichen Bedeutung" verloren gegangen sein? Wo wird ein anderes Bezugssystem als dasjenige IS angedeutet, in dem der Punkt seine gekrümmte Bahn beschreibt? Wozu sprichst Du das IS überhaupt an? Die Bahn besteht übrigens (jedenfalls für Physiker und all normalen Menschen), bevor mit einem KS ein Ortsvektor definiert werden kann. Umweg über Klothoide ist eine - vor allem für den Leser - überflüssige Mühe und erscheint mir abwegig, gerade auch aus didaktischen Gründen. Warum die Ortsvariable im Text plötzlich anders heißen "müsste" - keine Ahnung. - Sag mir nachvollziehbare Fehler, dann bessere ich die gerne aus. Aber nicht so am Text vorbei.--Bleckneuhaus (Diskussion) 13:51, 29. Jul. 2019 (CEST)
- Es gibt formal keine Fehler, nur die Herangehensweise find ich suboptimal. Du erwähnst die Schmiegekugel. Aber statt dann direkt auf die wichtigste lokale Bahngröße, nämlich die Bahnkrümmung einzugehen, wird dann erst mal v ausgerechnet, was bei einem typischen Anwendungsfall bekannt ist. Ohne Vektorrechnung wäre man ohne Umschweife direkt bei der Formel a_ZP=v^2/r gelandet. Vektoriell wäre das a_zP=omega x v, da sich die Änderung des v-Vektors als omega ausdrücken läßt. Statt dessen wird das umgedreht, es taucht ein O auf, was leider Urspung benannt wird und daher mit dem Ursprung des Systems in dem die Bahn definiert wird verwechselt werden könnte. Ich hatte mir von Dir die beste didaktische Lösung erwartet und seh das nicht ganz erfüllt.--Wruedt (Diskussion) 15:28, 29. Jul. 2019 (CEST)
- Danke, das hat mir etwas geholfen. Die Abb. entfernt, sie hat wohl eher zu Vewirrung angestiftet als geholfen, sie sollte ja nur den sin-Faktor bebildern. --Bleckneuhaus (Diskussion) 15:52, 29. Jul. 2019 (CEST)
- Wenn schon einfach, dann aber richtig. Die Einschränkung, dass r und omega nicht senkrecht sind, kann fallen gelassen werden. r wird ja als Vektor in der Bahnebene definiert. Mach mich mal dran.--Wruedt (Diskussion) 16:36, 29. Jul. 2019 (CEST)
- Ja, mach, ich bin gespannt. Dass das so nicht mehr ganz schlüssig war, war ein editrest. --Bleckneuhaus (Diskussion) 17:08, 29. Jul. 2019 (CEST)
- Der Fall r nicht senkrecht auf omega sollte doch wieder raus. Eingangs wird erwähnt (vorausgeseztzt), dass r in der Bahnebene liegt. Warum also sollte ein "Urspung" woanders "gewählt" werden. Das war meine ursprüngliche Motivation den lokalen Bahnparameter (Krümmung) zu bestimmen. Jetzt stehen zwar einfache Formeln da, wie genau aber man die Bahnebene und omega bestimmt wird nicht gesagt. Dass das beim starren Körper anders ist, liegt darin, dass man beliebige Punkte des starren Körpers berechnen will und nicht nur die in der Bahnebene.--Wruedt (Diskussion) 19:12, 29. Jul. 2019 (CEST)
- Umgekehrt wird ein Schuh draus. Die vektorielle Herleitung stimmt von Anfang an für jeden Ursprung auf der momentanen Rotationsachse. Und in diesem Artikel sollte natürlich die Formel vorgestellt werden, die den allgemeinen Fall abdeckt, nicht nur die ebene Kreisbewegung. --Bleckneuhaus (Diskussion) 22:29, 29. Jul. 2019 (CEST)
- Der Fall r nicht senkrecht auf omega sollte doch wieder raus. Eingangs wird erwähnt (vorausgeseztzt), dass r in der Bahnebene liegt. Warum also sollte ein "Urspung" woanders "gewählt" werden. Das war meine ursprüngliche Motivation den lokalen Bahnparameter (Krümmung) zu bestimmen. Jetzt stehen zwar einfache Formeln da, wie genau aber man die Bahnebene und omega bestimmt wird nicht gesagt. Dass das beim starren Körper anders ist, liegt darin, dass man beliebige Punkte des starren Körpers berechnen will und nicht nur die in der Bahnebene.--Wruedt (Diskussion) 19:12, 29. Jul. 2019 (CEST)
- Ja, mach, ich bin gespannt. Dass das so nicht mehr ganz schlüssig war, war ein editrest. --Bleckneuhaus (Diskussion) 17:08, 29. Jul. 2019 (CEST)
- Wenn schon einfach, dann aber richtig. Die Einschränkung, dass r und omega nicht senkrecht sind, kann fallen gelassen werden. r wird ja als Vektor in der Bahnebene definiert. Mach mich mal dran.--Wruedt (Diskussion) 16:36, 29. Jul. 2019 (CEST)
- Danke, das hat mir etwas geholfen. Die Abb. entfernt, sie hat wohl eher zu Vewirrung angestiftet als geholfen, sie sollte ja nur den sin-Faktor bebildern. --Bleckneuhaus (Diskussion) 15:52, 29. Jul. 2019 (CEST)
- Es gibt formal keine Fehler, nur die Herangehensweise find ich suboptimal. Du erwähnst die Schmiegekugel. Aber statt dann direkt auf die wichtigste lokale Bahngröße, nämlich die Bahnkrümmung einzugehen, wird dann erst mal v ausgerechnet, was bei einem typischen Anwendungsfall bekannt ist. Ohne Vektorrechnung wäre man ohne Umschweife direkt bei der Formel a_ZP=v^2/r gelandet. Vektoriell wäre das a_zP=omega x v, da sich die Änderung des v-Vektors als omega ausdrücken läßt. Statt dessen wird das umgedreht, es taucht ein O auf, was leider Urspung benannt wird und daher mit dem Ursprung des Systems in dem die Bahn definiert wird verwechselt werden könnte. Ich hatte mir von Dir die beste didaktische Lösung erwartet und seh das nicht ganz erfüllt.--Wruedt (Diskussion) 15:28, 29. Jul. 2019 (CEST)
"Herleitung der Zentripetalbeschleunigung im kartesischen Koordinatensystem"
Diese "Herleitung", die vorgibt a_ZP in karthesischen Koordinaten herzuleiten ist imo "Mist". Am Ende stellt sich raus, dass diese "Herleitung" nur zum Zeitpunkt Null gilt. Man hätte schlicht aus dem vorangegangenen die Formel a_ZP=v^2/R anwenden können, fertig. "Zum Zeitpunkt t=0 befinde sich der Punkt im Ursprung des kartesischen Koordinatensystems" ist ein weiterer "Höhepunkt" der Herleitung. So einen Abschnitt braucht imo kein Mensch.--Wruedt (Diskussion) 19:48, 19. Feb. 2020 (CET)
IÜ ist die bevorzugte Gleichung a_ZP=v^2/R. Beim Fahren auf einer Rennstrecke gibt es kein omega, sondern Radien, die mit der Geschwindigkeit v befahren werden. v und R sind also bekannt, es macht im Allgemeinen keinen Sinn ein bekanntes v wieder aus omega ausrechnen zu wollen. Der Abschnitt ist formal und inhaltlich überflüssig.--Wruedt (Diskussion) (ohne (gültigen) Zeitstempel signierter Beitrag von Wruedt (Diskussion | Beiträge) 19:56, 19. Feb. 2020 (CET))
Der Ursprung eines Koordinatensystem (IS) befindet sich sinnvollerweise weder im lokalen Krümmungsmittelpunkt, noch in dem Punkt in dem sich der Körper zu einem x-beliebigen Zeitpunkt befindet. Derartige Vorgaben sind Unsinn und eine Herleitung die sich darauf beruft auch. Dass die Beschleunigung die 2te Ableitung des Ortes ist, sollte aus dem vorangegangen hinlänglich bekannt sein. Deshalb braucht auch kein Mensch mehr die 2te Ableitung eines Kreises.--Wruedt (Diskussion) 20:51, 19. Feb. 2020 (CET)
- Guten Abend Wruedt. Es ist schade, dass Du diese Herleitung als Mist bezeichnest, weil es nämlich unter den drei aufgeführten Herleitungen die Einfachste ist! Ich will Dir gerne zeigen, wie das funktioniert: Die Beschleunigung in der y-Richtung verläuft im Zeitpunkt t=0 zentripetal, also zum Zentrum hin. Deshalb berechnet man die Beschleunigung (sie ist die zweite zeitliche Ableitung des Ortes) zum Zeitpunkt t=0. Wenn der Punkt sich später an einem anderen Ort des Kreises befindet, lässt sich an diesem Ort (in der zweiten Zeichnung für Dich gelb eingezeichnet) wieder ein kartesisches Koordiantensystem darstellen, und in diesem kann dieselbe Rechnung durchgeführt werden. Es ist eben so, dass die Herleitung nicht, wie von Dir vermutet nur für den einen Punkt, sondern für jeden Punkt des Kreises gilt! Ob man oder schreibt ist egal, weil ist. Aber ich werde in der Herleitung zwecks zusätzlichem Verständnis diesen Zusammenhang gerne noch aufführen. Solltest Du weitere Fragen haben, so ich bin ich gerne bereit, Dir weiterzuhelfen! --Hp.Baumeler (Diskussion) 20:57, 19. Feb. 2020 (CET)
- Ob man neben den beiden vorhandenen Herleitung - geometrisch und im Vektorkalkül - auch noch eine in kartesischen Koordinaten haben sollte, darüber kann man ja reden. Dass aber Deine Herleitung, Baumeler, nicht taugt, sieht man doch schon an den länglichen Zusatzerklärungen hier, mit denen Du die Allgemeingültigkeit belegen musst, weil sie in Deinem Text fehlen. Ein Leser, der eine kartesische Herleitung braucht, wäre meiner Vermutung nach auch nicht von allein auf diese Erklärungen gekommen. Ich hoffe, Dir damit weitergeholfen zu haben! (Verzeihung, Retourkutsche!) --Bleckneuhaus (Diskussion) 22:02, 19. Feb. 2020 (CET)
- Ja, diese längeren Erklärungen waren ja auch nur für Wruedt aufgeführt, weil einem Physiker die kurze Herleitung zum Verständnis längst genügt. Dass die Herleitung nicht taugen soll, kann wohl kaum das Wort eines Physikers sein. Ich kenne Physiker, die sehen das anders. Lustig, dass ihr diese Herleitung bekämpft, ist sie doch unter den dreien die einfachste! Oder sagt mir doch bitte, was da falsch ist! Was aber ganz sicher falsch ist, ist die Behauptung, man könne am Ort des beschrieben Punktes kein Koordinatensystem aufziehen: "Der Ursprung eines Koordinatensystem (IS) befindet sich sinnvollerweise weder im lokalen Krümmungsmittelpunkt, noch in dem Punkt in dem sich der Körper zu einem x-beliebigen Zeitpunkt befindet. Derartige Vorgaben sind Unsinn". SELBSTVERSTÄNDLICH kann man der Einfachheit wegen am Ort des Punktes ein Koordinatensystem aufziehen. Wie ihr doch sieht, führt dieses Koordinatensystem zu einem schönen, nämlich dem richtigen Resultat! --Hp.Baumeler (Diskussion) 22:10, 19. Feb. 2020 (CET)
- OMG---Wruedt (Diskussion) 22:31, 19. Feb. 2020 (CET)
- Ja, diese längeren Erklärungen waren ja auch nur für Wruedt aufgeführt, weil einem Physiker die kurze Herleitung zum Verständnis längst genügt. Dass die Herleitung nicht taugen soll, kann wohl kaum das Wort eines Physikers sein. Ich kenne Physiker, die sehen das anders. Lustig, dass ihr diese Herleitung bekämpft, ist sie doch unter den dreien die einfachste! Oder sagt mir doch bitte, was da falsch ist! Was aber ganz sicher falsch ist, ist die Behauptung, man könne am Ort des beschrieben Punktes kein Koordinatensystem aufziehen: "Der Ursprung eines Koordinatensystem (IS) befindet sich sinnvollerweise weder im lokalen Krümmungsmittelpunkt, noch in dem Punkt in dem sich der Körper zu einem x-beliebigen Zeitpunkt befindet. Derartige Vorgaben sind Unsinn". SELBSTVERSTÄNDLICH kann man der Einfachheit wegen am Ort des Punktes ein Koordinatensystem aufziehen. Wie ihr doch sieht, führt dieses Koordinatensystem zu einem schönen, nämlich dem richtigen Resultat! --Hp.Baumeler (Diskussion) 22:10, 19. Feb. 2020 (CET)
- Guten Abend auch von mir. Ich schließe mich inhaltlich voll Bleckneuhaus an. Damit stehen ein Voll-Physiker, ein halber und ein physikalisch bewanderter Ingenieur nebeneinander gegen deinen Vorschlag, Hp.Baumeler. Du müsstest deinen Text ganz neu aufsetzen, damit er so verstanden werden kann, wie du es meinst, und selbst dann stellt sich die Frage "ist eine dritte Herleitung wirklich von Mehr-Wert"? Gruß Kein Einstein (Diskussion) 22:48, 19. Feb. 2020 (CET)
- @Baumeler: denkst Du etwa, wir schreiben hier für Physiker (denen "die kurze Herleitung zum Verständnis längst genüg")? --Bleckneuhaus (Diskussion) 22:53, 19. Feb. 2020 (CET)
- Ich muss schmunzeln, wenn ich da lese, dass " ein Voll-Physiker, ein halber und ein physikalisch bewanderter Ingenieur" mir nocht nicht erklärt haben, was da falsch sein soll! Wenn dann einer der Kapazitäten einen Fehler aufzeigt, können wir wieder verhandeln. --Hp.Baumeler (Diskussion) 23:03, 19. Feb. 2020 (CET)
- Ich bin irritiert von der Dreistigkeit, mit der ein Neuling (was den Bereich Physik betrifft) die Artikel chaotisieren will, bloß weil es in der Sache nicht wirklich falsch ist. Begründe doch bitte erstmal, wer warum eine dritte Herleitung brauchen sollte. --Bleckneuhaus (Diskussion) 23:17, 19. Feb. 2020 (CET)
- @Hp.Baumeler: Abgesehen von Stilfragen (wenn du auf der WP:VM gemeldet worden wärest, wäre eine Maßnahme wegen Editwar 3-gegen-1 meiner Einschätzung nach hochwahrscheinlich gewesen) geht es doch primär darum, dass dein Text nicht so verstanden wird, wie du ihn verstanden haben willst (erste Kritik) und die dritte Herleitung nicht einen Mehrwert liefert (zweite Kritik). Lediglich auf den zweiten Punkt bist du eingegangen. Ich habe die Überarbeitungen deines Textes noch nicht genauer angesehen - aber da wir kein Lehrbuch schreiben sondern eine Enzyklopädie sind drei Herleitungen eines Sachverhalts imho grenzwertig. Wen die Kollegen aber des lieben Friedens willen zufrieden sind, dann mag es wohl so sein. Kein Einstein (Diskussion) 17:14, 20. Feb. 2020 (CET)
- Ich bin irritiert von der Dreistigkeit, mit der ein Neuling (was den Bereich Physik betrifft) die Artikel chaotisieren will, bloß weil es in der Sache nicht wirklich falsch ist. Begründe doch bitte erstmal, wer warum eine dritte Herleitung brauchen sollte. --Bleckneuhaus (Diskussion) 23:17, 19. Feb. 2020 (CET)
- Ich muss schmunzeln, wenn ich da lese, dass " ein Voll-Physiker, ein halber und ein physikalisch bewanderter Ingenieur" mir nocht nicht erklärt haben, was da falsch sein soll! Wenn dann einer der Kapazitäten einen Fehler aufzeigt, können wir wieder verhandeln. --Hp.Baumeler (Diskussion) 23:03, 19. Feb. 2020 (CET)
- @Baumeler: denkst Du etwa, wir schreiben hier für Physiker (denen "die kurze Herleitung zum Verständnis längst genüg")? --Bleckneuhaus (Diskussion) 22:53, 19. Feb. 2020 (CET)
- Guten Abend auch von mir. Ich schließe mich inhaltlich voll Bleckneuhaus an. Damit stehen ein Voll-Physiker, ein halber und ein physikalisch bewanderter Ingenieur nebeneinander gegen deinen Vorschlag, Hp.Baumeler. Du müsstest deinen Text ganz neu aufsetzen, damit er so verstanden werden kann, wie du es meinst, und selbst dann stellt sich die Frage "ist eine dritte Herleitung wirklich von Mehr-Wert"? Gruß Kein Einstein (Diskussion) 22:48, 19. Feb. 2020 (CET)
Waw!!!... das tönt doch schon mal ganz anders! Zuerst hat es geheissen, das sei Mist und man könne den Koordinatenursprung nicht an den Ort des Punktes setzen und dass die Herleitung nichts tauge. Mittlerweile heisst es bloss in der Sache nicht falsch ist. Und nun mal ganz kurz zu diesem "Neuling (was den Bereich Physik betrifft)". Es ist nämlich so, dass ich seit dem Anfang der Diskussion schmunzeln muss, ganz einfach deshalb, weil dieser "Neuling" seines Zeichens über 30 Jahren Dr. der Physik ist! Ihr habt Euch leider verschätzt. Noch eine Antwort: Die Herleitung soll drin bleiben, weil sie einen dritten Zugang zum Verständis der Zentripetalbeschleunigung gibt. --Hp.Baumeler (Diskussion) 23:35, 19. Feb. 2020 (CET)
- Falls es dir nicht aufgefallen ist. Die simpelste Herleitung steht bereits in vektorielle Darstellung. Mit der 2. Gleichung a=omega x v ist man bereits fertig! Das könnte man für OMA noch etwas didaktischer wegen omega=v/r zum Ergebnis a_ZP=v^2/r umformen. Was an deinem Abschnitt einen Mehrwert darstellt und sogar einen "Zugang zum Verständnis der Zentripetabeschleunigung" sein soll erschließt sich nicht. Selbst Satz-Redundanzen (ist zum Mittelpunkt gerichtet) werden nochmal bemüht. Wart noch drauf, dass der nächste einen Abschnitt mit einer Parabel bringt, die 2 mal abgeleitet wird.--Wruedt (Diskussion) 08:43, 20. Feb. 2020 (CET)
- Als "Dreistigkeit" empfinde ich die Art, wie du den Abschnitt per EW hier reindrückst. Geht's hier um Verbesserung des Artikels oder um einen Eintrag in deiner "Artikelliste". Es ist jedenfalls kein Mehrwert zum xten Mal die Gleichung a=v^2/r "herzuleiten".--Wruedt (Diskussion) 08:55, 20. Feb. 2020 (CET)
- @Baumeler: Ein Dr. der Physik garantiert leider noch keinen guten Artikel. Neuling bezog sich doch wohl erkennbar auf Deinen (lt. Deiner Nutzerseite) erstmaligen Vorstoß in den Physik-Bereich bei Wikipedia. Dass Physiker und Ingenieure bezüglich der Freiheiten und Bezeichnungen und Standpunkte zu wechseln, aus verschiedenen Universen zu stammen scheinen, ist hier der Alltag. Und unterlasse bitte personenbezogene Einschätzungen. Zur Sache: eine Herleitung mittels Koordinaten könnte durchaus reinpassen, auch wenn sie sicher nicht das "Verständnis der Zentripetabeschleunigung" anders zugänglich macht, allenfalls die Formel. Aber dann bitte angemessen formuliert! Dein Text würde so oder so nicht lange so bleiben. --Bleckneuhaus (Diskussion) 11:30, 20. Feb. 2020 (CET)
Guten Tag Wruedt, Guten Tag Bleckneuhaus.
Wruedt ,Du sprichst von Dreistigkeit? Lies doch bitte mal diese langen Diskussionen durch! Da hat einer geschrieben:
- … ist imo "Mist". Am Ende stellt sich raus, dass diese "Herleitung" nur zum Zeitpunkt Null gilt.
- … auf einer Rennstrecke gibt es kein omega, sondern Radien, die mit der Geschwindigkeit v
- … Der Ursprung eines Koordinatensystem (IS) befindet sich sinnvollerweise weder im lokalen Krümmungsmittelpunkt, noch in dem Punkt in dem sich der Körper zu einem x-beliebigen Zeitpunkt befindet. Derartige Vorgaben sind Unsinn und eine Herleitung die sich darauf beruft auch.
- … Dass aber Deine Herleitung, Baumeler, nicht taugt, sieht man doch schon an den länglichen Zusatzerklärungen
- … Ich bin irritiert von der Dreistigkeit, mit der ein Neuling (was den Bereich Physik betrifft) die Artikel chaotisieren will …
Wenn etwas in dieser Diskussion dreist ist, dann sind es diese obigen Aussagen, die nun leider jeder auf der Welt nachlesen kann. Wruedt, Du hast doch … ich meine das auch gar nicht böse .. doch längst bewiesen, dass Du die dritte Herleitung weder gekannt noch verstanden hattest. Aber ich sehe, dass Du mittlerweile von den Ausdrücken wie "Mist" und "Unsinn" Abstand nimmst, was so auch gut ist. Vielen Dank. Nun noch zur Sache ob diese (nicht mehr unsinnige) Herleitung aufgeführt werden soll: Es gibt eben viele Wege nach Rom. Und ein Sizilianer wird wohl eine Strasse aus dem Süden wählen. Und so hat jeder Leser oder Student, der sich auf dem Gebiet schlau machen will die Möglichkeit, die seinen Kenntnissen am nächsten liegende Herleitung anzugehen. Die dritte Herleitung ist die einzige, die die Zentripetalbeschleunigung eindimensional herleitet! Ist das keine Bereicherung? Die zweite Herleitung mit dem Vektor-Kreuzprodukt ist auch schön und interessant, aber sie startet im dreidimensionalen Raum, um schliesslich eine eindimensionale Beschleunigung herzuleiten. Für viele Leser ist das vielleicht komplexer als die dritte eindimensionale Herleitung. Ein Leser oder Student der sich in der Vektorrechnung gut auskennt, verfolgt vielleicht Lösung 1) oder 2). Wenn ein anderer aber sich in der einfachen eindimensionalen Newtonschen-Mechanik auskennt, dann liest er vielleicht Herleitung Nr. drei! Und deshalb ist die dritte Herleitung eine wertvolle Ergänzung. Wir wollen doch dem Leser diese einfache Herleitung nicht vorenthalten. Wruedt, ich finde es immer schade, wenn auf Wikipedia engagierte Autoren so aneinander geraten, haben sie doch ein gemeinsames schönes Hobby. Wärst Du am Anfang nicht gleich mit "Mist" und dergleichen losgefahren, hätte doch alles einen anderen Lauf genommen. Vielleicht gelingt es uns mal an einem anderen Thema zusammenzuarbeiten.
Bleckneuhaus, Wer hat da "personenbezogene Einschätzungen" gemacht … mit "Mist" und "Unsinn"? Zudem ist es einmalmehr total falsch, zu behaupten, ich hätte auf Wiki noch nichts über Physik geschrieben. Ihr seid eingeladen, falls ihr die dritte Lösung irgendwie verbessern wollt, daran mitzuarbeiten. Gruss --Hp.Baumeler (Diskussion) 12:24, 20. Feb. 2020 (CET)
- Die Herleitung taugt immer noch nicht's um es vorsichtig zu formulieren. Natürlich kann man zu jedem Zeitpunkt ein Koordinatensystem hinbappen, aber warum sollte man das tun. Die beiden ersten Herleitungen schaffen es bei jeder beliebigen Bahn, mit dem Bahnparameter Krümmung eine Zentripetalbeschleunigung herzuleiten. IÜ vielen Dank für deine "Besorgnis" zum Verständnis. Wär dir dankbar wenn du Mutmaßungen über das was ich verstehe oder nicht für dich behält's. IÜ ist "Mist" ein sachbezogenes Urteil und kein personenbezogenes. Zum sachbezogenen steh ich immer noch, da der Ausgangspunkt einer sauberen Herleitung immer eine Trajektorie sein muss. Wie man auf den Bahnparameter Krümmung oder Krümmungkreis kommt kann man verlinken. (nicht signierter Beitrag von Wruedt (Diskussion | Beiträge) --13:48, 20. Feb. 2020 (CET))
- An einer so trolligen Diskussion möchte ich mich nicht weiter beteiligen. Stattdessen habe ich eine eigene Herleitung eingestellt, die die kritisierten Punkte vermeidet und überdies die mangelhafte Abbildung (y-Achse ohne Begründung in unüblicher Orientierung) überflüssig macht. --Bleckneuhaus (Diskussion) 17:32, 20. Feb. 2020 (CET)
Herleitung der Zentripetalbeschleunigung im kartesischen Koordinatensystem 2
Bleckneuhaus, Deine Herleitung ist sauber! Schön, dass es jetzt doch noch eine dritte Herleitung gibt! Die Verschiebung des Koordinatenursprunges ins Zentrum des Kreises macht aus der eindimensionalen Aufgabe eine zweidimensionale, aber damit kann man gut leben! Ich glaube, man könnte, wenn ich das sagen darf, vielleicht die ersten zwei Sätze noch etwas anders formulieren. Und zwei ganz kleine Details: Ich würde den Satz vor der Formel mit einem Doppelpunkt abschliesen und dafür den Punkt hinter der Formel weglassen (so wie das auch in der ersten der drei Herleitungen gemacht wurde). Vielleicht würden die Formeln noch etwas lesbarer, wenn Du zwischen dem r und dem Cos und Sin noch einen cdot einfügen würdest. Vielen Dank für Deine schöne Arbeit! Gruss --Hp.Baumeler (Diskussion) 17:50, 20. Feb. 2020 (CET)
Krümmung
Die Krümmung ist in der Fahrdynamik, aber auch in der Eisenbahntechnik ein wichtiger Begriff. In der Fahrdynamik gibt's dazu sogar einen Kennwert, die "Krümmungsverstärkung", statische Lenkempfindlichkeit genannt. Die ist auch für jeden Autofahrer wichtig, wenn er vom Parkplatz runterkommen will. Auch wenn das für Physiker nicht so relevant erscheint, so könnte man schon mal Begriffe aus anderen Wissensgebieten tolerieren. Hoffe daher auf dein Verständnis bei meinen revert. Eine einsichtige Begründung für deine 2 reverts kann ich jedenfalls nicht erkennen. Wo bitte stand die zugegeben einfache Beziehung kappa=1/r. Didaktisch kann es nicht verkehrt sein, das am Anfang zu bringen. Mit Krümmung statt mit Radius zu arbeiten, ist bei vielen Anwendungen schon aus numerischen Gründen vorteilhaft (Geradeausfahrt).--Wruedt (Diskussion) 13:28, 22. Feb. 2020 (CET)
- Gar nicht einverstanden. Wenn - wie hier - in einem xy-KS ein Kreis definiert werden soll, sind Mittelpunkt und Radius die eindeutigen, einfachsten und ausreichenden Bestimmungsstücke. Das dürfte für Ingenieure eigentlich auch gültig sein. Der Begriff „lokale Krümmung“ ist einige Herleitungsstufen weit davon entfernt. Diese Zutat im Text ändert absolut nichts an seinem Inhalt, macht ihn auch nicht leichter zugänglich oder nachvollziehbar oder anwendbar. Es ist absolut überflüssig, die Lokalität der Krümmung hervorzuheben, zumal das einige Zeilen weiter ja drankommt. Also ein überflüssiges aufblähendes Füllwort, das schlimmstefalls die Aufmerksamkeit des Lesers woanders hin lenkt als im Fortgang des Textes beabsichtigt. Das soll man um des Erklärungswerts vermeiden - so lautet eine ziemlich selbstverständliche Regel in der Vermittlung von Informationen. - Auch dass kappa in dieser Herleitung etwas zu suchen haben sollte, ist falsch. Oder glaubst Du im Ernst, es gäbe auch nur einen Ingenieur, der an das Auftauchen von "lokaler Krümmung" so gewöhnt ist, dass er den Text ohne dies nicht so leicht verdauen könnte? Also raus damit! --Bleckneuhaus (Diskussion) 14:18, 22. Feb. 2020 (CET)
- Ingenieure brauchen eine Formel die überall gilt, nicht nur 12 Uhr Mittags oder bei Radien um die 100 m. Deshalb sind Trassen im Straßenbau und bei der Eisenbahn Krümmungsvorgaben. Und da die Zentripetalbeschleunigung auch mal Null werden kann ist a_ZP=v^2*kappa die allgemeinste Gleichung, sie darf deshalb im Artikel nicht fehlen. Warum muss man da immerhin zum 3ten Mal den revert-Knopf drücken, bevor das sachlich ausdiskutiert ist. Ob man die didaktische Information früher oder später bringt,ist doch kein entscheidendes Argument.--Wruedt (Diskussion) 14:37, 22. Feb. 2020 (CET)
- das mit dem 3. Mal war wohl eine Retourkutsche aus dem Glashaus. Ob man die didaktisch überflüssige Information früher oder später bringt (am besten aber gar nicht), ist für mich ein entscheidendes Argument bei Bewertung eines Textes. Und dass es hier nur um die (dritte!) Ableitung einer fertigen Formel geht, von der schon mehrfach im Artikel gesagt ist (zB Einleitung 1. Satz), dass man im allgemeinen den lokalen Krümmungsradius nehmen muss, macht Deinen Einschub wirklich überflüssig. - Das ganze ist hier natürlich ein arg kleines Problemchen. Aber mich stört prinzipiell die Verunstaltung eines schlanken, schlüssigen, nachvollziehbaren Textes. Wenn die Formel mit kappa so wichtig ist wie Du sagst, dann baue sie bitte nicht unbedingt erst in die 3. Alternative zur Herleitung ein. In der 1. Herleitung hab ich dafür eben schon mal was ergänzt. --Bleckneuhaus (Diskussion) 15:03, 22. Feb. 2020 (CET)
- Die Krümmung spielt auch beim normalen Autofahren eine zentrale Rolle. Der Fahrer sensiert die Krümmung (Winkeländerung pro Wegstrecke) und nicht den Radius. Er muss seine Geschwindigkeit so anpassen, dass a_ZP einen bestimmten Wert nicht überschreitet. Das klappt in den allermeisten Fällen ziemlich gut. Der Mensch hat also intuitiv die Gleichung a_ZP=v^2*kappa verinnerlicht. Die Krümmung ist Gott sei Dank auch lokal. Man möchte schließlich von A nach B und nicht im Kreis fahren. Man erwartet überdies, dass auf eine Gerade nicht schlagartig ein Kreis folgt.--Wruedt (Diskussion) 15:07, 22. Feb. 2020 (CET)
- das mit dem 3. Mal war wohl eine Retourkutsche aus dem Glashaus. Ob man die didaktisch überflüssige Information früher oder später bringt (am besten aber gar nicht), ist für mich ein entscheidendes Argument bei Bewertung eines Textes. Und dass es hier nur um die (dritte!) Ableitung einer fertigen Formel geht, von der schon mehrfach im Artikel gesagt ist (zB Einleitung 1. Satz), dass man im allgemeinen den lokalen Krümmungsradius nehmen muss, macht Deinen Einschub wirklich überflüssig. - Das ganze ist hier natürlich ein arg kleines Problemchen. Aber mich stört prinzipiell die Verunstaltung eines schlanken, schlüssigen, nachvollziehbaren Textes. Wenn die Formel mit kappa so wichtig ist wie Du sagst, dann baue sie bitte nicht unbedingt erst in die 3. Alternative zur Herleitung ein. In der 1. Herleitung hab ich dafür eben schon mal was ergänzt. --Bleckneuhaus (Diskussion) 15:03, 22. Feb. 2020 (CET)
- Ingenieure brauchen eine Formel die überall gilt, nicht nur 12 Uhr Mittags oder bei Radien um die 100 m. Deshalb sind Trassen im Straßenbau und bei der Eisenbahn Krümmungsvorgaben. Und da die Zentripetalbeschleunigung auch mal Null werden kann ist a_ZP=v^2*kappa die allgemeinste Gleichung, sie darf deshalb im Artikel nicht fehlen. Warum muss man da immerhin zum 3ten Mal den revert-Knopf drücken, bevor das sachlich ausdiskutiert ist. Ob man die didaktische Information früher oder später bringt,ist doch kein entscheidendes Argument.--Wruedt (Diskussion) 14:37, 22. Feb. 2020 (CET)
Wenn irgend was überflüssig ist, dann die 3. Herleitung einer einzigen Gleichung. Wer bis dahin durchgehalten hat, hat den Satz der Intro ("die sich aus den momentanen Werten für den Krümmungsradius der Bahn und die Geschwindigkeit ergibt.") schon lang wieder vergessen. Statt dieser Fingerübungen könnte man sich drauf konzentrieren, wo die Größe a_ZP eine Rolle spielt, ... Das Übergewicht dieser Fingerübungen im Vergleich zum restlichen Text ist jedenfalls beachtlich. Bin deshalb immer noch der Meinung, dass auf die 3te Herleitung verzichtet werden kann. Wie oft muss die Kreisbewegung noch bemüht werden. IÜ hatte ich die Gleichung vor deinen reverts in die 1te Herleitunhg eingebaut ("dann baue sie bitte nicht unbedingt erst in die 3. Alternative zur Herleitung ein.")--Wruedt (Diskussion) 15:37, 22. Feb. 2020 (CET)
Könntest du bitte mal einen Disk-Beitrag absetzen. Aus deinen revert-Kommentaren wird man auch nicht schlauer ebenso wenig aus den Diff's. Dennoch geh ich nach wie vor davon aus, dass die reverts in der Absicht getätigt wurden den Artikel zu verbessern und nicht eine reine Zeitersparnis sind. 4 reverts wegen eines einzigen "Füllworts" sind etwas viel.--Wruedt (Diskussion) 18:22, 22. Feb. 2020 (CET)
- Einen aus Versehen getätigten Revert korrigiert. --Bleckneuhaus (Diskussion) 18:47, 22. Feb. 2020 (CET)
- Bevor's den nächsten revert gibt die Frage, warum „lokal“ unmittelbar 2 mal hintereinander vorkommen muss. Einmal als 1/r, das nächste Mal in der Gestalt von r.--Wruedt (Diskussion) 19:31, 22. Feb. 2020 (CET)
- Weil räumlich und zeitlich lokal heißt, dass es um Eigenschaften geht, deren mathematische Definition schon in einer beliebig kleinen Umgebung funktioniert, und lokalen Krümmungsradius, weil das ein mE feststehender Begriff ist (Du kannst ihn gerne durch lokale Krümmung ersetzen oder sogar hier das lokal weglassen, weil in Krümmung sofort darauf abgestellt wird). --Bleckneuhaus (Diskussion) 20:30, 22. Feb. 2020 (CET)
- Bevor's den nächsten revert gibt die Frage, warum „lokal“ unmittelbar 2 mal hintereinander vorkommen muss. Einmal als 1/r, das nächste Mal in der Gestalt von r.--Wruedt (Diskussion) 19:31, 22. Feb. 2020 (CET)
Zentripetalkraft und Gravitationskraft
Im Artikel fehlt jeder Hinweis darauf, dass Newton Zentripetalkraft und Gravitationskraft einander gleichsetzt (Principia, Buch III, Scholium nach Lehrsatz 5). Dabei ist die "Zentripetalkraft" dasjenige, was Newton in den Principia auf der Grundlage von Erfahrung und Experiment als Erstes genau bestimmt (Principia, Buch I, Abschn. II bis XIV); die Gravitationskraft ist also identisch mit dieser Zentripetalkraft in allen ihren Charakteristika. Das sollte zum besseren Verständnis wenigstens erwähnt werden. Ed Dellian--2003:D2:9738:B16:D5F9:41C1:6CD:2EF1 15:07, 30. Okt. 2020 (CET)
- Benutzt Newton Zentripetalkraft denn ausschließlich im Zusammenhang mit Gravitation? Nur in diesem Fall wäre ich für die vorgeschlagene Erwähnung. Ansonsten ist die Lage doch in den zwei Abschnitten "Etymologie und Begriffsgeschichte" und “Unterschied von Zentripetalkraft und Zentralkraft” gleich nach der Einleitung wirklich schon ausgiebig dargestllt, oder nicht? --Bleckneuhaus (Diskussion) 17:27, 30. Okt. 2020 (CET)
- Ich ergänze gleich mal selber: Direkt nach der Definition V ("A centripetal force is that by which bodies are drawn or impelled, or any way tend, towards a point as to a centre. ", übers. Motte 1846) kommen mehrere Beispiele, darunter etwa der Stein am Strick, die nichts mit Gravitation zu tun haben. - Ich kann diesen Vorstoß von Ed Dellian, dem erlesenen Kenner von Newtons Originalarbeiten, absolut nicht nachvollziehen. Sonst jemand? --Bleckneuhaus (Diskussion) 17:35, 30. Okt. 2020 (CET)