Streuungsmaß (Statistik)
Streuungsmaße, auch Dispersionsmaße (lateinisch dispersio „Zerstreuung“, von dispergere „verteilen, ausbreiten, zerstreuen“) oder Streuungsparameter genannt, fassen in der deskriptiven Statistik verschiedene Maßzahlen zusammen, die die Streubreite von Werten einer Stichprobe beziehungsweise einer Häufigkeitsverteilung um einen geeigneten Lageparameter herum beschreiben. Die verschiedenen Berechnungsmethoden unterscheiden sich prinzipiell durch ihre Beeinflussbarkeit beziehungsweise Empfindlichkeit gegenüber Ausreißern.
Anforderungen an ein Streuungsmaß
Es sei eine Stichprobe und eine Funktion. heißt ein Streuungsmaß, wenn es im Allgemeinen folgende Anforderungen erfüllt:
- ist eine nichtnegative reelle Zahl, die Null ist, wenn alle Beobachtungen gleich sind (in den Daten ist keinerlei Variabilität vorhanden), und zunimmt, wenn die Daten vielfältiger werden. Wenn mindestens zwei Merkmalswerte voneinander verschieden sind, dann streuen die Daten untereinander bzw. um einen Mittelwert, was auch beim Streuungsmaß zum Ausdruck kommen sollte.
- Bei einem Streuungsmaß wird Nichtnegativität gefordert, da bei Streuung „das Ausmaß“ statt „die Richtung“ konstituierend ist. Ein Streuungsmaß sollte also umso größer sein, je stärker Beobachtungswerte voneinander abweichen. Noch strenger wird oft gefordert, dass sich ein Streuungsmaß bei einer Ersetzung eines Beobachtungswertes durch einen neuen Merkmalswert nicht verkleinern darf.
- ist translationsinvariant[1], d. h. eine Verschiebung des Nullpunktes hat keinen Einfluss auf die Verteilung. Es muss also folgendes gelten:
- Es ist auch wünschenswert, dass das Streuungsmaß gegenüber Maßstabsänderungen invariant ist.[2]
Ein einfacher Ansatz für ein Streuungsmaß wäre, die Differenzen der Werte vom empirischen Mittel aufzusummieren. Dies führt zu
Diese Summe ergibt allerdings stets 0, weil sich positive und negative Summanden gegenseitig aufheben (Schwerpunkteigenschaft). Das ist also nicht geeignet als Streuungsmaß, da der Wert nicht zunimmt, wenn die Variabilität der Daten steigt. Möglichkeiten bestehen also darin, die Absolutbeträge oder die Quadrate der Abweichungen zu summieren.
Maßzahlen
Um das arithmetische Mittel
Summe der Abweichungsquadrate
Das intuitivste Streuungsmaß stellt die Summe der Abweichungsquadrate dar. Sie ergibt sich als -fache empirische Varianz
- .
Empirische Varianz
Einer der wichtigsten Streuungsparameter ist die Varianz, die in zwei leicht unterschiedlichen Varianten definiert wird. Die Herkunft dieser Unterschiede und ihre Verwendung wird im Hauptartikel erläutert. Die Fassungen sind gegeben als
beziehungsweise
Hierbei bezeichnet jeweils das arithmetische Mittel der Stichprobe .
Empirische Standardabweichung
Die Standardabweichung ist definiert als die Wurzel aus der Varianz und liegt demnach auch in zwei Versionen vor:
beziehungsweise
Ein wesentlicher Unterschied zur empirischen Varianz ist, dass die empirische Standardabweichung dieselbe Dimension und damit dieselben Einheiten wie die Stichprobe besitzt.
Variationskoeffizient
Der empirische Variationskoeffizient wird gebildet als Quotient aus empirischer Standardabweichung und arithmetischem Mittel :
- .
Er ist dimensionslos und somit nicht einheitenbehaftet.
Mittlere absolute Abweichung
Die mittlere absolute Abweichung einer Zufallsvariablen von ihrem Erwartungswert ist definiert durch
- .
Damit ist sie das erste absolute zentrierte Moment der Zufallsvariable . Im Falle einer konkreten Stichprobe mit dem arithmetischen Mittel wird sie errechnet durch
Die mittlere absolute Abweichung wird in der mathematischen Statistik meist zugunsten der quadratischen Abweichung umgangen, welche analytisch leichter zu behandeln ist. Die in der Definition verwendete Betragsfunktion ist nicht überall differenzierbar, was die Berechnung des Minimums erschwert.
Aufgrund der Ungleichung vom arithmetisch-quadratischen Mittel ist die mittlere absolute Abweichung kleiner oder gleich der Standardabweichung (Gleichheit gilt nur für konstante Zufallsgrößen).
Für symmetrische Verteilungen, d. h. Verteilungen mit der Eigenschaft für alle reellen , mit monoton fallender Dichte für , gilt
- .
Für die stetige Gleichverteilung gilt das Gleichheitszeichen.
Um den Median
Quantilsabstand
Der Quantilsabstand ist die Differenz zwischen dem - und -Quantil:
- mit
Innerhalb des liegen Prozent aller Messwerte.
Interquartilsabstand
Der Interquartilsabstand (engl.
), abgekürzt IQR, wird als Differenz
der Quartile und berechnet:
Innerhalb des IQR liegen 50 % aller Messwerte. Er ist – wie auch der Median bzw. – unempfindlich gegenüber Ausreißern. Es lässt sich zeigen, dass er einen Bruchpunkt von hat.
Der Interquartilsabstand ist gleich dem Quantilsabstand
Mittlere absolute Abweichung vom Median
Die mittlere absolute Abweichung (engl.
, abgekürzt MD) vom Median ist definiert durch
Im Falle einer konkreten Stichprobe wird sie errechnet durch
Aufgrund der Extremaleigenschaft des Medians gilt im Vergleich mit der mittleren absoluten Abweichung stets
- ,
d. h. die mittlere absolute Abweichung bezüglich des Medians ist erst recht kleiner als die Standardabweichung.
Für symmetrische Verteilungen stimmen Median und Erwartungswert und damit auch und überein.
Für die Normalverteilung gilt:
Median der absoluten Abweichungen
Die mittlere absolute Abweichung (engl.
, auch MedMed), abgekürzt MAD, ist definiert durch
Im Falle einer konkreten Stichprobe wird sie errechnet durch
Durch die Definition ergibt sich im Falle von normalverteilten Daten folgender Zusammenhang zur Standardabweichung:
ist das 0,75-Quantil der Standardnormalverteilung und beträgt ca. 0,6745.
Die mittlere absolute Abweichung ist ein robuster Schätzer für die Standardabweichung. Es lässt sich zeigen, dass sie einen Bruchpunkt von hat.
Weitere Streuungsmaße
Spannweite
Die Spannweite (englisch range) berechnet sich als Differenz zwischen dem größten und dem kleinsten Messwert:
Da die Spannweite nur aus den zwei Extremwerten berechnet wird, ist sie nicht robust gegenüber Ausreißern.
Geometrische Standardabweichung
Die geometrische Standardabweichung ist ein Streuungsmaß um das geometrische Mittel.
Graphische Darstellungsformen
Siehe auch
Einzelnachweise
- ↑ Andreas Büchter, H.-W. Henn: Elementare Stochastik - Eine Einführung. 2. Auflage. Springer, 2007, ISBN 978-3-540-45382-6, S. 83.
- ↑ Hans Friedrich Eckey et al.: Statistik: Grundlagen — Methoden — Beispiele., S. 74. (1. Aufl. 1992; 3. Aufl. 2002 (ISBN 3409327010). Die 4. Aufl. 2005 und die 5. Aufl. 2008 erschienen unter dem Titel Deskriptive Statistik: Grundlagen — Methoden — Beispiele).
Literatur
- Günter Buttler, Norman Fickel (2002), „Einführung in die Statistik“, Rowohlt Verlag
- Jürgen Bortz (2005), Statistik: Für Human- und Sozialwissenschaftler (6. Auflage), Springer Verlag, Berlin
- Bernd Rönz, Hans G. Strohe (1994), Lexikon Statistik, Gabler Verlag