Parameter (Statistik)
In der Statistik fassen aggregierende Parameter oder Maßzahlen die wesentlichen Eigenschaften einer Häufigkeitsverteilung, z. B. einer längeren Reihe von Messdaten, oder einer Wahrscheinlichkeitsverteilung zusammen.
Einige Parameter der deskriptiven Statistik entsprechen den Momenten von Zufallsvariablen.
Der Begriff Parameter wird auch bei Verteilungsmodellen verwendet, man spricht dann von Verteilungsparametern. Er ist dann meist eine von mehreren Größen, die zusammen mit der Verteilungsklasse die genaue Form einer Verteilung festlegen.
Lageparameter
- Median exp.svg
Der Median (hier Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{\ln 2}\lambda} ) teilt die Masse der Verteilung
- Mean exp.svg
Der Erwartungswert (hier ) ist der Schwerpunkt der Verteilung
Lageparameter dienen dazu, die Lage der Gesamtheit der Stichprobenelemente beziehungsweise der Elemente der Grundgesamtheit in Bezug auf die Messskala pauschal zu beschreiben. Ein Lageparameter fasst die Gesamtheit der betrachteten Werte zu einer repräsentativen Zahl – der zentralen Tendenz – zusammen.
Definition
Sei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x_{1},\dots ,x_{n}\in \mathbb {R} } eine Stichprobe. Eine Funktion heißt Lagemaß, wenn sie translationsäquivariant ist:[1][2]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l(x_1 + a, \dots, x_n + a) = l(x_1, \dots, x_n) + a} mit
Beispiele
In der deskriptiven Statistik nutzt man als Lageparameter einer Verteilung:
- Arithmetisches Mittel: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{\text{arithm.}}(x_1, \dots, x_n) = \frac{1}{n} (x_1 + \cdots + x_n)}
- empirische Quantile: Median, Quartile, Dezile, Perzentile
- Modus
Für die drei zuerst genannten Lageparameter sowie Modus und Median siehe auch Mittelwert.
Bei Zufallsvariablen spricht man vom Erwartungswert.
Nach der obigen Definition sind folgende Kenngrößen keine Lagemaße:
- Geometrisches Mittel: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{\text{geom.}}(x_1, \dots, x_n) = \sqrt[n]{x_1 \cdot x_2 \dotsm x_n} }
- Harmonisches Mittel:
Streuungsparameter
Unter einem Streuungsmaß oder Dispersionsmaß (auch Streuungsparameter) versteht man statistische Kennziffern, durch deren Ermittlung sich Aussagen über die Verteilung von zum Beispiel aus Wägungen und Zählungen stammenden Messwerten um den Mittelpunkt treffen lassen. In der Deskriptiven Statistik beschreibt man die Streuung (oder Dispersion; auch Variation) mit folgenden Maßen:
- empirische Varianz, auch (mehrdeutig) Stichprobenvarianz genannt, die mittlere quadrierte Abweichung vom arithmetischen Mittel
- Empirische Standardabweichung, die Wurzel aus der empirischen Varianz
- Spannweite, die Differenz zwischen größter und kleinster Beobachtung (englisch range)
- Mittlere absolute Abweichung vom arithmetischen Mittel
- Interquartilsabstand, der die mittleren 50 % der Beobachtungen enthält (engl. interquartile range)
Konzentrationsparameter
Als Konzentrationsparameter bei der Unternehmenskonzentration gibt es:
- Absolute und relative Konzentration: siehe Konzentrationsrate
- Atkinson-Maß
- Gini-Koeffizient aus der Lorenz-Kurve
- Herfindahl-Index
- Hoover-Ungleichverteilung
- Rosenbluth-Index
- Theil-Index