Distickstoffpentoxid

aus Wikipedia, der freien Enzyklopädie
Strukturformel
Strukturformel von Distickstoffpentoxid
Allgemeines
Name Distickstoffpentoxid
Andere Namen
  • DNPO
  • Salpetersäureanhydrid
  • Stickstoff(V)-oxid
Summenformel N2O5
Kurzbeschreibung

farbloser Feststoff[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 10102-03-1
EG-Nummer 233-264-2
ECHA-InfoCard 100.030.227
PubChem 66242
Eigenschaften
Molare Masse 108,01 g·mol−1
Aggregatzustand

fest[1]

Dichte

1,64 g·cm−3[1]

Schmelzpunkt

30–35 °C[1]

Löslichkeit

reagiert mit Wasser[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
keine Einstufung verfügbar[2]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Distickstoffpentoxid ist das Anhydrid der Salpetersäure und gehört zur Gruppe der Stickoxide.

Darstellung

Distickstoffpentoxid kann aus Salpetersäure durch Entwässern mit Phosphorpentoxid gewonnen werden.[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{6 \ HNO_3 + P_2O_5\ \longrightarrow\ 2 \ H_3PO_4 + 3 \ N_2O_5}}
Salpetersäure reagiert mit Diphosphorpentaoxid zu Phosphorsäure und Distickstoffpentaoxid.

Andere Möglichkeiten der Herstellung bestehen in der Umsetzung von salzartigen Nitraten oder konzentrierter Salpetersäure mit Nitrylfluorid (NO2F) oder von letzterer mit Fluorwasserstoff oder durch Oxidation des in der Gasphase dimer als N2O4 vorliegenden NO2 mit Ozon.[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{2 \ NO_2 + O_3 \longrightarrow N_2 O_5 + O_2}}

Ab 1983 erfolgt die technische Synthese meist durch Elektrolyse von Salpetersäure in Anwesenheit von Distickstofftetroxid.[3]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{2 \ HNO_3 \longrightarrow N_2O_5 + H_2O}}

Eigenschaften

Struktur von Distickstoffpentoxid mit Bindungslängen und Winkeln[4]

Distickstoffpentoxid bildet farblose Kristalle, die sich mit Wasser heftig zu Salpetersäure zersetzen.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{N_2O_5 + H_2O\ \longrightarrow\ 2 \ HNO_3}}
Distickstoffpentoxid reagiert mit Wasser zu Salpetersäure.

Die Verbindung ist löslich in Chloroform, Tetrachlormethan, Trichlorfluormethan und Sulfolan, jedoch müssen die Lösungen auf mindestens 0 °C gekühlt werden. Sie zersetzt sich bei Raumtemperatur zu NO2 und O2. Die Halbwertszeit beträgt bei 0 °C etwa 10 Tage, bei 20 °C etwa 10 Stunden.[1] Bei schnellem Erhitzen erfolgt die Zersetzung oft explosionsartig.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{2 \ N_2O_5\ \longrightarrow 4 \ NO_2 + O_2}}

Im festen Aggregatzustand besitzt Distickstoffpentoxid die Ionenstruktur [NO2+][NO3][5] und besitzt eine hexagonale Kristallstruktur mit der Raumgruppe P63/mmc (Raumgruppen-Nr. 194)Vorlage:Raumgruppe/194[6]. Es hat sehr stark oxidierende Eigenschaften.

Verwendung

Lösungen von reinem Distickstoffpentoxid in organischen Lösungsmitteln (z. B. Dichlormethan oder Trichlorfluormethan) stellen milde Nitrierungsmittel dar, die eine breite Anwendung gefunden haben.[3]

Literatur

  • Erwin Riedel: Anorganische Chemie. 5. Auflage. De Gruyter, Berlin 2002, ISBN 3-11-017439-1.

Einzelnachweise

  1. a b c d e f g h G. Brauer (Hrsg.): Handbook of Preparative Inorganic Chemistry, 2nd ed., vol. 1, Academic Press 1963, S. 489–490.
  2. Dieser Stoff wurde in Bezug auf seine Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  3. a b Thomas M. Klapötke: Chemie der hochenergetischen Materialien. Walter de Gruyter, 2009, ISBN 978-3-11-021487-1, S. 142 (eingeschränkte Vorschau in der Google-Buchsuche).
  4. Bruce M. McClelland, Alan D. Richardson, Kenneth Hedberg: A Reinvestigation of the Structure and Torsional Potential of N2O5 by Gas-Phase Electron Diffraction Augmented by Ab Initio Theoretical Calculations. In: Helvetica Chimica Acta. Band 84, Nr. 6, 2001, S. 1612–1624, doi:10.1002/1522-2675(20010613)84:6<1612::AID-HLCA1612>3.0.CO;2-K.
  5. Ralf Steudel: Chemie der Nichtmetalle: Von Struktur und Bindung zur Anwendung. Walter de Gruyter, 2008, ISBN 978-3-11-021128-3, S. 347 (eingeschränkte Vorschau in der Google-Buchsuche).
  6. Jean d’Ans, Ellen Lax, Roger Blachnik: Taschenbuch für Chemiker und Physiker. Springer DE, 1998, ISBN 3-642-58842-5, S. 586 (eingeschränkte Vorschau in der Google-Buchsuche).