Divisionsalgebra

aus Wikipedia, der freien Enzyklopädie
Divisionsalgebra

berührt die Spezialgebiete

ist Spezialfall von

umfasst als Spezialfälle

Divisionsalgebra ist ein Begriff aus dem mathematischen Teilgebiet der abstrakten Algebra. Grob gesprochen handelt es sich bei einer Divisionsalgebra um einen Vektorraum, in dem man Elemente multiplizieren und dividieren kann.

Definition und Beispiel

Eine Divisionsalgebra ist eine nicht notwendigerweise assoziative Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D \neq \{0\}} , in der zu je zwei Elementen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a, b \in D, a \neq 0,} die Gleichungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \times x = b} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y \times a = b} stets eindeutige Lösungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x, y \in D} besitzen. Dabei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \times } die Vektormultiplikation in der Algebra. Das ist gleichbedeutend damit, dass die Algebra frei von Nullteilern ist.[1]

Enthält die Divisionsalgebra ein Einselement, so dass für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in D} gilt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \times 1 = 1 \times a = a} , so spricht man von einer Divisionsalgebra mit Eins.

Beispiel einer Divisionsalgebra ohne Einselement mit den beiden Einheiten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e_2} , die mit beliebigen reellen Zahlen multipliziert werden können:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{matrix} e_1 \times e_1 &=& +e_1\\ e_1 \times e_2 &=& -e_2\\ e_2 \times e_1 &=& -e_2\\ e_2 \times e_2 &=& -e_1 \end{matrix} }

Sätze über reelle Divisionsalgebren

Eine endlichdimensionale Divisionsalgebra über den reellen Zahlen hat stets die Dimension 1, 2, 4 oder 8. Das wurde 1958 mit topologischen Methoden von John Milnor und Michel Kervaire bewiesen.

Die vier reellen, normierten, Divisionsalgebren mit Eins sind (bis auf Isomorphie):

Dieses Resultat ist als Satz von Hurwitz (1898) bekannt. Alle außer den Oktaven erfüllen das Assoziativgesetz der Multiplikation.

Jede reelle, endlichdimensionale und assoziative Divisionsalgebra ist isomorph zu den reellen Zahlen, den komplexen Zahlen oder zu den Quaternionen; dies ist der Satz von Frobenius (1877).

Jede reelle, endlichdimensionale kommutative Divisionsalgebra hat maximal die Dimension 2 als Vektorraum über den reellen Zahlen (Satz von Hopf, Heinz Hopf 1940). Dabei wird Assoziativität nicht vorausgesetzt.

Topologische Beweise der Existenz von Divisionsalgebren über den reellen Zahlen

Heinz Hopf zeigte 1940, dass die Dimension einer Divisionsalgebra eine Potenz von 2 sein muss.[2] 1958 zeigten dann Michel Kervaire und John Milnor[3] unabhängig voneinander unter Benutzung des Periodizitätssatzes von Raoul Bott über Homotopiegruppen der unitären und orthogonalen Gruppen, dass die Dimensionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 4} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 8} sein müssen (entsprechend den reellen Zahlen, den komplexen Zahlen, den Quaternionen und Oktonionen). Letztere Aussage konnte bisher nicht rein algebraisch bewiesen werden. Der Beweis wurde von Michael Atiyah und Friedrich Hirzebruch auch mit Hilfe der K-Theorie formuliert.[4][5]

Dazu betrachtet man nach Hopf die Multiplikation einer Divisionsalgebra der Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} über den reellen Zahlen als stetige Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb R^n \times \mathbb R^n \to \mathbb R^n} oder eingeschränkt auf Elemente der Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1} (man teile durch die Norm der Elemente, diese ist ungleich null für Elemente ungleich null da eine Divisionsalgebra nullteilerfrei ist) als Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^{n-1} \times S^{n-1} \to S^{n-1}} . Hopf bewies, dass es eine solche ungerade Abbildung (das heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f (-x, y) =-f(x,y) =f (x, -y)} ) nur gibt, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} eine Potenz von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2} ist. Dazu benutzte er die Homologiegruppen des projektiven Raums. Es gibt weitere äquivalente Formulierungen zur Existenz von Divisionsalgebren der Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} :

  • Die Sphäre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^{n-1}} (oder der projektive Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb P^{n-1}} ) ist parallelisierbar (das heißt, es gibt zu jedem Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^{n-1}} (n-1) linear unabhängige Vektoren, die stetig von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} abhängen und senkrecht auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} stehen).
  • Es gibt Vektorraumbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^{n-1}} mit Stiefel-Whitney Kohomologieklasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w_n (E)} ungleich null.
  • Es gibt eine Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon S^{2n-1} \to S^n} mit ungerader Hopf-Invariante (siehe Hopf-Verschlingung). Frank Adams zeigte, dass solche Abbildungen nur für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\in \{2,4, 8\}} existieren.[6][7]

Anwendung

  • Divisionsalgebren mit Einselement sind Quasikörper (nicht unbedingt umgekehrt). Daher liefert jedes Beispiel einer Divisionsalgebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D} in der synthetischen Geometrie ein Beispiel für eine Affine Translationsebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D^2} .

Siehe auch

Literatur

  • Ebbinghaus et al.: Zahlen. Berlin: Springer, 1992, ISBN 3-540-55654-0
  • Stefaan Caenepeel, A. Verschoren Rings, Hopf Algebras, and Brauer Groups, CRC Press, 1998, ISBN 0-82470-153-4

Einzelnachweise

  1. z. B. Shafarevich, Grundzüge der algebraischen Geometrie, Vieweg 1972, S. 201. Die lineare Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi (x)= a \times x} (analog für Rechtsmultiplikation) bildet D auf sich ab und ist injektiv, der Kern besteht danach nur aus der Null.
  2. Hopf, Ein topologischer Beitrag zur reellen Algebra, Comm. Math. Helvetici, Band 13, 1940/41, S. 223–226
  3. Milnor, Some consequences of a theorem of Bott, Annals of Mathematics, Band 68, 1958, S. 444–449
  4. Atiyah, Hirzebruch, Bott periodicity and the parallelisability of the spheres, Proc. Cambridge Phil. Soc., Band 57, 1961, S. 223–226
  5. Die Darstellung zu den topologischen Beweisen folgt Friedrich Hirzebruch, Divisionsalgebren und Topologie (Kapitel 10), in Ebbinghaus u. a. Zahlen, Springer, 1983
  6. Adams, On the non-existence of elements of Hopf invariant one, Annals of Mathematics, Band 72, 1960, S. 20–104
  7. Ein Beweis mit K-Theorie ist in Atiyah, K-Theory, Benjamin 1967