Hopf-Verschlingung

aus Wikipedia, der freien Enzyklopädie

Datei:Hopt link.webm

Hopf-Verschlingung

In der Knotentheorie, einem Teilgebiet der Mathematik, ist die Hopf-Verschlingung (auch Hopf-Link) das einfachste Beispiel einer Verschlingung zweier Kreise.

Hopf-Verschlingung

Die Hopf-Verschlingung ist eine Verschlingung bestehend aus zwei Unknoten (d. h. unverknoteten Kreisen), deren Verschlingungszahl (je nach Orientierung) plus oder minus 1 beträgt.

Ein konkretes Modell sind zum Beispiel die im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^3} durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\cos t,\sin t,0)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\cos t + 1,0,\sin t)} parametrisierten Kreise.

Topologie des Komplements

Das Komplement der Hopf-Verschlingung in der 3-Sphäre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^3} ist homöomorph zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^1\times S^1\times\left( 0,1\right)} . Die Linkgruppe, also die Fundamentalgruppe des Komplements, ist isomorph zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Z\times\Z} , der freien abelschen Gruppe mit zwei Erzeugern.

Invarianten

Das Jones-Polynom ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V(t)=-t-t^{-1}} ,

das HOMFLY-Polynom ist

,

die Hopf-Verschlingung ist der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2,2)} -Torus-Link und sie ist der Abschluss des Zopfes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_1^2} .

Hopf-Faserung und Homotopiegruppen, Hopf-Invariante

Heinz Hopf untersuchte 1931 die Hopf-Faserung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h\colon S^3\to S^2}

und stellte fest, dass je zwei Fasern eine Hopf-Verschlingung bilden.

Allgemein definierte er für Abbildungen Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f\colon S^{3}\to S^{2}} die heute als Hopf-Invariante bezeichnete Invariante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H(f)\in\Z} als Verschlingungszahl der Urbilder zweier regulärer Werte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} und er bewies, dass die Zuordnung

Shingon-shu Buzan-ha crest
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\to H(f)}

einen Isomorphismus

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_3(S^2)\to\Z}

ergibt.

Vorkommen in Kunst, Wissenschaft und Philosophie

Catenane
  • Die Hopf-Verschlingung wird von der dem Shingon-shū zuzuordnenden buddhistischen Sekte Buzan-ha als Symbol verwendet.
  • Catenane stellen eine Hopf-Verschlingung dar.
  • Die Hopf-Verschlingung kommt in zahlreichen Skulpturen des japanischen Künstlers Keizo Ushio vor.

Literatur

  • Heinz Hopf: Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104 (1931), 637–665 (PDF)
  • Colin Adams: Das Knotenbuch. Spektrum Akademischer Verlag (1995). ISBN 978-3860253380

Weblinks

Commons: Hopf links – Sammlung von Bildern, Videos und Audiodateien