Mittelwert

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Durchschnittswert)

Ein Mittelwert (kurz auch nur Mittel; anderes Wort Durchschnitt) ist eine Zahl, die aus gegebenen Zahlen nach einer bestimmten Rechenvorschrift ermittelt wird. Gebräuchlich sind Rechenvorschriften für das arithmetische, das geometrische und das quadratische Mittel. Mit dem Wort Mittel oder Durchschnitt ist meistens das arithmetische Mittel gemeint.

In der Statistik ist der Mittelwert einer der Parameter, die den typischen Wert einer Verteilung charakterisieren, bzw. die die zentrale Tendenz einer Verteilung zum Ausdruck bringen (Lageparameter).

Eng verwandt ist der arithmetische Mittelwert mit dem Erwartungswert einer Verteilung. Während der Mittelwert aus konkreten vorliegenden Zahlenwerten ermittelt wird, beruht der Erwartungswert auf der theoretisch zu erwartenden Häufigkeit.

Geschichte

In der Mathematik treten Mittelwerte, insbesondere die drei klassischen Mittelwerte (arithmetisches, geometrisches und harmonisches Mittel), bereits in der Antike auf. Pappos von Alexandria kennzeichnet zehn verschiedene Mittelwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} von zwei Zahlen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a<b} ) durch spezielle Werte des Streckenverhältnisses Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (b-m):(m-a)} . Auch die Ungleichung zwischen harmonischem, geometrischem und arithmetischem Mittel ist in der Antike bereits bekannt und geometrisch interpretiert. Im 19. und 20. Jahrhundert spielen Mittelwerte in der Analysis eine spezielle Rolle, dort im Wesentlichen im Zusammenhang mit berühmten Ungleichungen und wichtigen Funktionseigenschaften wie Konvexität (Hölder-Ungleichung, Minkowski-Ungleichung, Jensensche Ungleichung usw.). Dabei wurden die klassischen Mittelwerte in mehreren Schritten verallgemeinert, zunächst zu den Potenzmittelwerten (siehe Abschnitt Hölder-Mittel unten) und diese wiederum zu den quasi-arithmetischen Mittelwerten. Die klassische Ungleichung zwischen harmonischem, geometrischem und arithmetischem Mittel geht dabei über in allgemeinere Ungleichungen zwischen Potenzmittelwerten bzw. quasi-arithmetischen Mittelwerten.

Visualisierung des arithmetischen Mittels

Datei:Seesaw with mean.svg
Visualisierung des arithmetischen Mittels mit einer Wippe.
Nachrechnung ohne Dimension:
Kugelgewicht gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 5,} Abstände zum Drehpunkt gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2, 1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3} ergibt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 5 \cdot 2 + 5 \cdot 1 = 5 \cdot 3}

Den meistbenutzten Mittelwert, das arithmetische Mittel, kann man z. B. mithilfe gleich schwerer Kugeln auf einer Wippe visualisieren, die aufgrund der Hebelgesetze durch ein Dreieck (Drehpunkt) ausbalanciert sind. Unter der Annahme, dass das Gewicht des Balkens vernachlässigt werden kann, entspricht die Position des Dreiecks, das die Balance herbeiführt, dem arithmetischen Mittel der Kugelpositionen.

Definitionen der drei klassischen Mittelwerte

Im Folgenden seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1, \dotsc, x_n} gegebene reelle Zahlen, in der Statistik etwa Messwerte, deren Mittelwert berechnet werden soll.[1]

Arithmetischer Mittelwert

Das arithmetische Mittel ist die Summe der gegebenen Werte geteilt durch die Anzahl der Werte.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_{\mathrm{arithm}} = \frac{1}{n} \sum_{i=1}^n{x_i} = \frac{x_1 + x_2 + \dotsb + x_n}{n}}

Geometrisches Mittel

Im Fall von Zahlen, die nicht auf Grund ihrer Summe, sondern ihres Produktes interpretiert werden, kann das geometrische Mittel berechnet werden. Dazu werden die Zahlen miteinander multipliziert und die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -te Wurzel gezogen, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} der Anzahl der zu mittelnden Zahlen entspricht.

Harmonischer Mittelwert

Das harmonische Mittel findet Verwendung, wenn die Zahlen im Bezug auf eine Einheit definiert sind. Dazu wird die Anzahl der Werte durch die Summe der Kehrwerte der Zahlen geteilt.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{harm} = \frac{n}{\sum\limits_{i=1}^n \frac{1}{x_i}} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dotsb + \frac{1}{x_n}}}

Beispiele für die Verwendung unterschiedlicher Mittelwerte

Merkmalsträger Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} Wert
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{(1)}} 3
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{(2)}} 2
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{(3)}} 2
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{(4)}} 2
3
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{(6)}} 4
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{(7)}} 5
Datei:Beispiel mittelwert diagramm.svg
Säulendiagramm zu den Beispielen

Im Folgenden soll beispielhaft an den sieben rechts angegebenen Einträgen in der Wertetabelle gezeigt werden, wo welche Definition des Mittelwerts sinnvoll ist.

Das arithmetische Mittel wird beispielsweise zum Berechnen der Durchschnittsgeschwindigkeit genutzt, die Werte werden also als Geschwindigkeiten interpretiert: Läuft eine Schildkröte erst eine Stunde lang drei Meter pro Stunde, dann drei Stunden lang je zwei Meter und beschleunigt für jeweils eine Stunde nochmals auf drei, vier und fünf Meter pro Stunde, so ergibt sich als arithmetisches Mittel bei einer Strecke von 21 Metern in 7 Stunden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \bar{x}_{\mathrm{arithm}} &= \frac17 \sum\limits_{i=1}^7 {x_i}\\ &= \frac{(3+2+2+2+3+4+5)\,\mathrm{m}}{7\,\mathrm{h}} = \frac{21\,\mathrm{m}}{7\,\mathrm{h}} = 3\,\mathrm{\frac mh} \end{align}}

Auch das harmonische Mittel kann zur Berechnung einer durchschnittlichen Geschwindigkeit sinnvoll sein, wenn nicht über gleiche Zeiten, sondern über gleiche Strecken gemessen wird. In dem Fall geben die Werte der Tabelle die Zeiten an, in der eine einheitliche Strecke zurückgelegt wird: Die Schildkröte laufe den 1. Meter mit 3 Metern pro Stunde, weitere 3 m mit jeweils 2 m/h und beschleunigt auf den letzten 3 Metern nochmals auf jeweils 3, 4 und 5 m/h. Die Durchschnittsgeschwindigkeit ergibt sich bei einer Strecke von 7 Metern in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{157}{60}}  Stunden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \bar{x}_{\mathrm{harm}} &= \frac7{\sum\limits_{i=1}^7 \frac1{x_i}}\\ &= \frac{7\,\mathrm m}{\left(\frac13 + \frac12 + \frac12 + \frac12 + \frac13 + \frac14 + \frac15\right)\,\mathrm h} = \frac{7\,\mathrm m}{\frac{157}{60}\,\mathrm h} \approx 2{,}68\,\mathrm{\frac mh} \end{align}}

Mit dem geometrischen Mittel errechnet man den mittleren Wachstumsfaktor. Die Wertetabelle wird also als die Angabe von Wachstumsfaktoren interpretiert. Eine Bakterienkultur wachse beispielsweise am ersten Tag auf das Fünffache, am zweiten auf das Vierfache, dann zweimal auf das Dreifache und die letzten drei Tage verdoppelt sie sich täglich. Der Bestand nach dem siebten Tag errechnet sich also durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{Anfangsbestand} \cdot 5 \cdot 4 \cdot 3 \cdot 3 \cdot 2 \cdot 2 \cdot 2 = \text{Endbestand}.} Alternativ kann mit dem geometrischen Mittel der Endbestand ermittelt werden, denn

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{geom} = \sqrt[7]{5 \cdot 4 \cdot 3 \cdot 3 \cdot 2 \cdot 2 \cdot 2} = \sqrt[7]{1440} \approx 2{,}83}

und somit ist

Ein tägliches Wachstum der Bakterienkultur um das 2,83-Fache hätte also nach sieben Tagen zum selben Ergebnis geführt.

Gemeinsame Definition der drei klassischen Mittelwerte

Die Idee, die den drei klassischen Mittelwerten zugrunde liegt, lässt sich auf folgende Weise allgemein formulieren:

Beim arithmetischen Mittel sucht man die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} , für die

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m + m + \dotsb + m = n \cdot m = x_1 + x_2 + \dotsb + x_n}

gilt, wobei sich die Summe links über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Summanden erstreckt. Das arithmetische Mittel mittelt also bzgl. der arithmetischen Verknüpfung „Summe“. Anschaulich bestimmt man mit dem arithmetischen Mittel aus Stäben verschiedener Länge einen mit einer durchschnittlichen oder mittleren Länge.

Beim geometrischen Mittel sucht man die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} , für die

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m \cdot m \dotsm m = m^n = x_1 \cdot x_2 \dotsm x_n}

gilt, wobei sich das Produkt links über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Faktoren erstreckt. Das geometrische Mittel mittelt also bzgl. der arithmetischen Verknüpfung „Produkt“.

Das harmonische Mittel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} löst die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac 1m + \frac 1m + \dotsb + \frac 1m = \frac nm = \frac 1{x_1} + \frac 1{x_2} + \dotsb + \frac 1{x_n}}

Zusammenhänge

Zusammenhang mit Erwartungswert

Der generelle Unterschied zwischen einem Mittelwert und dem Erwartungswert ist, dass der Mittelwert auf einen konkreten Datensatz angewendet wird, während der Erwartungswert Information über die Verteilung einer Zufallsvariablen liefert. Von Bedeutung ist die Verbindung zwischen diesen beiden Parametern. Wenn der Datensatz, auf den das Mittel angewendet wird, eine Stichprobe der Verteilung der Zufallsvariablen ist, ist das arithmetische Mittel der erwartungstreue und konsistente Schätzer des Erwartungswertes der Zufallsvariablen. Da der Erwartungswert dem ersten Moment einer Verteilung entspricht, wird der Mittelwert daher häufig genutzt, um aus empirischen Daten die Verteilung einzuschränken. Im Falle der häufig genutzten Normalverteilung, die durch die ersten beiden Momente vollkommen festgelegt ist, ist der Mittelwert daher von entscheidender Bedeutung.

Zusammenhang von arithmetischem, harmonischem und geometrischem Mittel

Der Kehrwert des harmonischen Mittels ist gleich dem arithmetischen Mittel der Kehrwerte der Zahlen.

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = 2} hängen die Mittelwerte untereinander in folgender Weise zusammen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_\mathrm{harm} = \frac{x_\mathrm{geom}^2}{x_\mathrm{arithm}}}

oder nach dem geometrischen Mittel aufgelöst

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_\text{geom} = \sqrt{ x_\text{arithm} \cdot x_\text{harm} }.}

Ungleichung der Mittelwerte

Die Ungleichung vom arithmetischen und geometrischen Mittel vergleicht die Werte des arithmetischen und geometrischen Mittels zweier gegebener Zahlen: Es gilt für positive Variable stets

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \min(x_1, \dotsc, x_n) \le \bar x_{\text{geom}}\le\bar x_{\text{arithm}} \le \max(x_1, \dotsc, x_n).}

Die Ungleichung lässt sich auch auf weitere Mittelwerte ausdehnen, z. B. (für positive Variable)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \min(x_1, \dotsc, x_n) \le \bar x_{\text{harm}}\le\bar x_{\text{geom}} \le \bar x_{\text{arithm}} \le \max(x_1, \dotsc, x_n).}

Für zwei (positive) Variablen gibt es auch eine grafische Veranschaulichung:

Geometrischer Beweis der Ungleichung für Mittelwerte zweier Variablen, Visualisierung von arithmetischem, geometrischem und harmonischem Mittel nach Pappos von Alexandria[2] Vergleich von arithmetischem, geometrischem, harmonischem und weiteren Mittelwerten zweier positiver reeller Zahlen '"`UNIQ--postMath-0000002C-QINU`"' und '"`UNIQ--postMath-0000002D-QINU`"' in dimensionsloser Darstellung
Geometrischer Beweis der Ungleichung für Mittelwerte zweier Variablen,
Visualisierung von arithmetischem, geometrischem und harmonischem Mittel nach Pappos von Alexandria[2]
Vergleich von arithmetischem, geometrischem, harmonischem und weiteren Mittelwerten zweier positiver reeller Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1} und in dimensionsloser Darstellung

Das geometrische Mittel folgt direkt aus dem euklidischen Höhensatz und das harmonische Mittel aus dem euklidischen Kathetensatz mit der Beziehung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\text{geom}^2 = \bar{x}_\text{harm} \cdot \bar{x}_\text{arithm}.}

Vergleich zu anderen Maßen der zentralen Tendenz

Datei:Comparison mean median mode.svg
Vergleich zwischen Modus, Median und „Mittel“ (eigentlich: Erwartungswert) zweier Log-Normalverteilungen

Häufig wird ein Mittelwert genutzt, um einen zentralen Wert eines Datensatz zu beschreiben. Dabei gibt es weitere Parameter, die ebenfalls diese Funktion erfüllen: Median und Modus. Der Median beschreibt einen Wert, der den Datensatz in zwei Hälften teilt, während der Modus den Wert mit der höchsten Häufigkeit im Datensatz angibt. Im Vergleich zum Median ist der Mittelwert anfälliger für Ausreißer und daher weniger robust. Weil der Median ein Quantil der Verteilung beschreibt, ist es auch möglich, dass dieser einen Wert aus der Ausgangsmenge beschreibt. Dies ist vor allem dann interessant, wenn die Zahlen zwischen den gegebenen Daten aus anderweitigen – beispielsweise physikalischen – Überlegungen nicht aussagekräftig sind. Der Median wird allgemein mit der folgenden Rechenvorschrift ermittelt.[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{med} = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, &n\text{ ungerade,}\\ \frac 12\left(x_{\left({\frac n2}\right)} + x_{\left({\frac n2+1}\right)}\right), &n \text{ gerade.} \end{cases} }

Weitere Mittelwerte und ähnliche Funktionen

Gewichtete Mittel

Die gewichteten oder auch gewogenen Mittelwerte entstehen, wenn man den einzelnen Werten unterschiedliche Gewichte zuordnet, mit denen sie in das Gesamtmittel einfließen; zum Beispiel, wenn bei einer Prüfung mündliche und schriftliche Leistung unterschiedlich stark in die Gesamtnote einfließen.

Die genauen Definitionen finden sich hier:

Quadratisches und kubisches Mittel

Weitere Mittel, die Verwendung finden, sind das quadratische Mittel und das kubische Mittel. Das quadratische Mittel wird mit der folgenden Rechenvorschrift berechnet:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{quadr} = \sqrt{\frac{1}{n}\sum_{i=1}^n{x_i^2}} = \sqrt \frac{x_1^2 + x_2^2 + \dotsb + x_n^2}{n} }

Das kubische Mittel wird wie folgt ermittelt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_\mathrm{kubisch} = \sqrt[3]{\frac{1}{n}\sum_{i=1}^n{x_i^3}} = \sqrt[3]{\frac{x_1^3 + x_2^3 + \dotsb + x_n^3}{n}} }

Logarithmischer Mittelwert

Der logarithmische Mittelwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_{a,b,\ln}} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_b} ist definiert als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_{a,b,\ln} = \frac{x_b - x_a}{\ln (\frac{x_b}{x_a})} = \frac{x_b - x_a}{\ln(x_b) - \ln(x_a)}}

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_a \neq x_b} liegt der logarithmische Mittelwert zwischen dem geometrischen und dem arithmetischen Mittelwert (für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_a = x_b} ist er wegen der Division durch null nicht definiert).

Winsorisiertes und getrimmtes Mittel

Kann man davon ausgehen, dass die Daten durch „Ausreißer“, das heißt einige wenige zu hohe oder zu niedrige Werte, kontaminiert sind, so kann man die Daten entweder durch Stutzen oder durch „Winsorisieren“ (benannt nach Charles P. Winsor) bereinigen und den getrimmten (bzw. gestutzten) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_{t\alpha}} (engl. truncated mean) oder winsorisierten Mittelwert (engl. Winsorized mean) berechnen. In beiden Fällen sortiert man die Beobachtungswerte zuerst nach aufsteigender Größe. Beim Trimmen schneidet man sodann eine gleiche Anzahl von Werten am Anfang und am Ende der Folge ab und berechnet von den übrig bleibenden Werten den Mittelwert. Hingegen werden beim „Winsorisieren“ die Ausreißer am Anfang und Ende der Folge durch den nächstkleineren (bzw. -größeren) Wert der restlichen Daten ersetzt.

Beispiel: Hat man 10 aufsteigend sortierte reelle Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1, \dotsc, x_{10}} , so ist das 10-%-getrimmte Mittel gleich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_{t0{,}1} = \frac{x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9}{8}.}

Indes ist der 10-%-winsorisierte Mittelwert gleich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_{w0{,}1} = \frac{x_2 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_9}{10}.}

D. h., das getrimmte Mittel liegt zwischen dem arithmetischen Mittel (keine Stutzung) und dem Median (maximale Stutzung). Üblicherweise wird ein 20-%-getrimmtes Mittel verwendet, d. h., 40 % der Daten bleiben unberücksichtigt für die Mittelwertberechnung. Die Prozentzahl richtet sich im Wesentlichen nach der Zahl der vermuteten Ausreißer in den Daten; für Bedingungen für eine Trimmung von weniger als 20 % sei auf die Literatur verwiesen.[3][4]

Quartilsmittel

Das Quartilsmittel ist definiert als der Mittelwert des 1. und 3. Quartils:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_q = \frac{\tilde x_{0{,}25} + \tilde x_{0{,}75}}{2}.}

Hierbei bezeichnet Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\tilde {x}}_{0{,}25}} das 25-%-Quantil (1. Quartil) und entsprechend Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde x_{0{,}75}} das 75-%-Quantil (3. Quartil) der Messwerte.

Das Quartilsmittel ist robuster als das arithmetische Mittel, aber weniger robust als der Median.

Mitte der kürzesten Hälfte

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a, b[} das kürzeste Intervall unter allen Intervallen mit , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{b - a}{2}} dessen Mitte (middle of the shortest half). Bei unimodalen symmetrischen Verteilungen konvergiert dieser Wert gegen das arithmetische Mittel.[5]

Gastwirth-Cohen-Mittel

Das Gastwirth-Cohen-Mittel[6] nutzt drei Quantile der Daten: das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} -Quantil und das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1-\alpha)} -Quantil jeweils mit Gewicht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} sowie den Median mit Gewicht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1-2\lambda} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_{gc} = \lambda\tilde x_{\alpha}+ (1-2\lambda) \tilde x_{0{,}5} + \lambda \tilde x_{1-\alpha}}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \leq \alpha \leq 0{,}5} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \leq \lambda \leq 0{,}5} .

Spezialfälle sind

  • das Quartilsmittel mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha = 0{,}25} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda = 0{,}5} und
  • das Trimean mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha = 0{,}25} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda = 0{,}25} .

Bereichsmittel

Das Bereichsmittel (englisch Mid-range) ist definiert als der arithmetische Mittelwert aus dem größten und dem kleinsten Beobachtungswert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}_b = \frac{\min_i x_i + \max_i x_i}{2}}

Dies ist gleichbedeutend mit:

Das „a-Mittel“

Für einen gegebenen reellen Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = (a_1, \dotsc, a_n)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{i=1}^n a_i = 1} wird der Ausdruck

wobei über alle Permutationen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{ 1, \dotsc, n\}} summiert wird, als „Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} -Mittel“ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a]} der nichtnegativen reellen Zahlen bezeichnet.

Für den Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = (1, 0, \dotsc, 0)} , ergibt das genau das arithmetische Mittel der Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1, \dotsc, x_n} ; für den Fall ergibt sich genau das geometrische Mittel.

Für die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} -Mittel gilt die Muirhead-Ungleichung.

Beispiel: Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a = \left(\tfrac 1 2, \tfrac 1 3, \tfrac 1 6\right)} und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 = 4, \, x_2 = 5, \, x_3 = 6,} dann gilt und die Menge der Permutationen (in Kurzschreibweise) von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{1, 2, 3\}} ist
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_3 = \{1\,2\,3, 1\,3\,2, 2\,1\,3, 2\,3\,1, 3\,1\,2, 3\,2\,1\}.}

Damit ergibt sich

:Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} {[a]} &= \frac{1}{3!}\left(x_1^{\frac 1 2}x_2^{\frac 1 3}x_3^{\frac 1 6}+x_1^{\frac 1 2}x_3^{\frac 1 3}x_2^{\frac 1 6}+x_2^{\frac 1 2}x_1^{\frac 1 3}x_3^{\frac 1 6}+x_2^{\frac 1 2}x_3^{\frac 1 3}x_1^{\frac 1 6}+x_3^{\frac 1 2}x_1^{\frac 1 3}x_2^{\frac 1 6}+x_3^{\frac 1 2}x_2^{\frac 1 3}x_1^{\frac 1 6}\right)\\  &= \frac 1 6\left(4^{\frac 1 2}{\cdot}5^{\frac 1 3}{\cdot}6^{\frac 1 6}+4^{\frac 1 2}{\cdot}6^{\frac 1 3}{\cdot}5^{\frac 1 6}+5^{\frac 1 2}{\cdot}4^{\frac 1 3}{\cdot}6^{\frac 1 6}+5^{\frac 1 2}{\cdot}6^{\frac 1 3}{\cdot}4^{\frac 1 6}+6^{\frac 1 2}{\cdot}4^{\frac 1 3}{\cdot}5^{\frac 1 6}+6^{\frac 1 2}{\cdot}5^{\frac 1 3}{\cdot}4^{\frac 1 6}\right)\\  &\approx 4{,}94. \end{align}}

Gleitende Durchschnitte

Gleitende Durchschnitte werden in der dynamischen Analyse von Messwerten angewandt. Sie sind außerdem ein gängiges Mittel der technischen Analyse in der Finanzmathematik. Mit gleitenden Durchschnitten kann das stochastische Rauschen aus zeitlich voranschreitenden Signalen herausgefiltert werden. Häufig handelt es sich dabei um FIR-Filter. Jedoch muss beachtet werden, dass die meisten gleitenden Durchschnitte dem echten Signal hinterherlaufen. Für vorausschauende Filter siehe z. B. Kalman-Filter.

Gleitende Durchschnitte benötigen normalerweise eine unabhängige Variable, die die Größe der nachlaufenden Stichprobe bezeichnet, bzw. das Gewicht des vorangehenden Wertes für die exponentiellen gleitenden Durchschnitte.

Gängige gleitende Durchschnitte sind:

  • arithmetische gleitende Durchschnitte (Simple Moving Average – SMA),
  • exponentiell gleitende Durchschnitte (Exponential Moving Average – EMA),
  • doppelt exponentiell gleitende Durchschnitte (Double EMA – DEMA),
  • dreifach, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -fach exponentiell gleitende Durchschnitte (Triple EMA – TEMA),
  • linear gewichtete gleitende Durchschnitte (linear abfallende Gewichtung),
  • quadratisch gewichtete gleitende Durchschnitte und
  • weitere Gewichtungen: Sinus, Triangular, …

In der Finanzliteratur können außerdem sogenannte adaptive gleitende Durchschnitte gefunden werden, die sich automatisch einer sich ändernden Umgebung (anderer Volatilität/Streuung etc.) anpassen:

  • Kaufmann’s Adaptive Moving Average (KAMA) sowie
  • Variable Index Dynamic Average (VIDYA).

Für die Anwendung von gleitenden Durchschnitten siehe auch Gleitende Durchschnitte (Chartanalyse) und MA-Modell.

Kombinierte Mittelwerte

Mittelwerte lassen sich kombinieren; so entsteht etwa das arithmetisch-geometrische Mittel, das zwischen dem arithmetischen und geometrischen Mittel liegt.

Verallgemeinerte Mittelwerte

Es gibt eine Reihe weiterer Funktionen, mit denen sich die bekannten und weitere Mittelwerte erzeugen lassen.

Hölder-Mittel

Für positive Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i} definiert man den Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -Potenzmittelwert, auch Hölder-Mittel (englisch -th power mean) als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}(k) = \sqrt[k]{\frac{1}{n}\sum_{i=1}^n{x_i^k}}.}

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = 0} ist der Wert durch stetige Ergänzung definiert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}(0) = \lim_{k\to 0}\bar{x}(k)}

Man beachte, dass sowohl Notation als auch Bezeichnung uneinheitlich sind.

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = -1, 0, 1, 2, 3} ergeben sich daraus etwa das harmonische, das geometrische, das arithmetische, das quadratische und das kubische Mittel. Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \to -\infty} ergibt sich das Minimum, für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \to +\infty} das Maximum der Zahlen.

Außerdem gilt bei festen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i} : Je größer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} ist, desto größer ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}(k)} ; daraus folgt dann die verallgemeinerte Ungleichung der Mittelwerte

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \min(x_1, \dotsc, x_n) \le \bar x_{\mathrm{harm}} \le \bar x_{\mathrm{geom}} \le \bar x_{\mathrm{arithm}} \le \bar x_{\mathrm{quadr}} \le \bar x_{\mathrm{kubisch}} \le \max(x_1, \dotsc, x_n).}

Lehmer-Mittel

Das Lehmer-Mittel[7] ist ein anderer verallgemeinerter Mittelwert; zur Stufe ist es definiert durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_p(a_1, a_2, \dotsc, a_n) = \frac{\sum_{k=1}^n a_k^p}{\sum_{k=1}^n a_k^{p-1}}.}

Es hat die Spezialfälle

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{p \to -\infty} L_p(a_1, \dotsc, a_n) = \min(a_1, \dotsc, a_n);}
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_0(a_1, \dotsc, a_n)} ist das harmonische Mittel;
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_{1/2}(a_1, a_2)} ist das geometrische Mittel von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_2} ;
  • ist das arithmetische Mittel;
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{p \to\ +\infty} L_p(a_1, \dotsc, a_n) = \max(a_1, \dotsc, a_n).}

Stolarsky-Mittel

Das Stolarsky-Mittel zweier Zahlen ist definiert durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_p(a,c) = \left(\frac{a^p-c^p}{p(a-c)}\right)^{1/p-1}.}

Integraldarstellung nach Chen

Die Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(t) = \frac{\int_a^b x^{t+1}\,\mathrm{d}x}{\int_a^b x^t\,\mathrm{d}x}}

ergibt für verschiedene Argumente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t \in \mathbb{R}} die bekannten Mittelwerte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} :[8]

  • Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f(-3)={\frac {2ab}{a+b}}} ist das harmonische Mittel.
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\left(-\frac{3}{2}\right) = \sqrt{a b}} ist das geometrische Mittel.
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(0) = \frac{a+b}{2}} ist das arithmetische Mittel.

Aus der Stetigkeit und Monotonie der so definierten Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} folgt die Mittelwertungleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underbrace{\frac{2 a b}{a + b}}_{\text{harm. } = f(-3)} \leq \underbrace{\sqrt{a b}}_{\text{geom. } = f\left( -\frac{3}{2}\right)} \leq \underbrace{\frac{b - a}{\ln b - \ln a}}_{\text{log. } = f(-1)} \leq \underbrace{\frac{a + \sqrt{a b} + b}{3}}_{\text{heron. } = f\left(-\frac{1}{2}\right)} \leq \underbrace{\frac{a + b}{2}}_{\text{arithm. } = f(0)}}

Mittelwert einer Funktion

Das arithmetische Mittel einer stetigen Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)} in einem geschlossenen Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{N \to \infty} \frac{\sum_{i=0}^N f(x_i)}{N} = \frac1{b-a}\int\limits_a^b f(x)\mathrm dx} , wobei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle N={\frac {b-a}{\Delta x}}} die Zahl der Stützstellen ist.

Das quadratische Mittel einer stetigen Funktion ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{\frac1{b-a}\int\limits_a^b f(x)^2\mathrm dx}.}

Diese finden in der Technik erhebliche Beachtung, siehe Gleichwert und Effektivwert.

Literatur

  • F. Ferschl: Deskriptive Statistik. 3. Auflage. Physica-Verlag Würzburg, ISBN 3-7908-0336-7.
  • P. S. Bullen: Handbook of Means and Their Inequalities. Kluwer Acad. Pub., 2003, ISBN 1-4020-1522-4 (umfassende Diskussion von Mittelwerten und den mit ihnen verbundenen Ungleichungen).
  • G. H. Hardy, J. E. Littlewood, G. Polya: Inequalities. Cambridge Univ. Press, 1964.
  • E. Beckenbach, R. Bellman: Inequalities. Springer, Berlin 1961.
  • F. Sixtl: Der Mythos des Mittelwertes. R. Oldenbourg Verlag, München/Wien 1996, 2. Aufl., ISBN 3-486-23320-3.

Weblinks

Wiktionary: Durchschnittswert – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wiktionary: Mittelwert – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. a b F. Ferschl: Deskriptive Statistik. 3. Auflage. Physica-Verlag Würzburg, ISBN 3-7908-0336-7. S. 48–74.
  2. Horst Hischer: Viertausend Jahre Mittelwertbildung. Babylonische Ungleichungskette. Universität des Saarlandes, 2003, S. 12, abgerufen am 26. Mai 2022.
  3. R. K. Kowalchuk, H. J. Keselman, R. R. Wilcox, J. Algina: Multiple comparison procedures, trimmed means and transformed statistics. In: Journal of Modern Applied Statistical Methods. Band 5, 2006, S. 44–65, doi:10.22237/jmasm/1146456300.
  4. R. R. Wilcox, H. J. Keselman: Power analysis when comparing trimmed means. In: Journal of Modern Applied Statistical Methods. Band 1, 2001, S. 24–31, doi:10.22237/jmasm/1020254820.
  5. L. Davies: Data Features. In: Statistica Neerlandica. Band 49, 1995, S. 185–245, doi:10.1111/j.1467-9574.1995.tb01464.x.
  6. J. L. Gastwirth, M. L. Cohen: Small sample behavior of some robust linear estimators of location, J Amer Statist Assoc 65:946–973, 1970, doi:10.1080/01621459.1970.10481137, JSTOR 2284600.
  7. Eric W. Weisstein: Lehmer Mean. In: MathWorld (englisch).
  8. H. Chen: Means Generated by an Integral. In: Mathematics Magazine. Vol. 78, Nr. 5 (Dez. 2005), S. 397–399, JSTOR 30044201.