Elastographie

aus Wikipedia, der freien Enzyklopädie

Die Elastographie (syn. Elastografie) ist als neueres bildgebendes Verfahren eine Weiterentwicklung sowohl der Ultraschalldiagnostik als auch der Magnetresonanztomographie (MRT) und geht eigentlich auf die jahrhundertealte manuelle Palpation durch die Hand zurück. Sie wurde bereits 1991 bekannt, jedoch erst deutlich später klinisch einsetzbar. Die entsprechenden Verfahren sind die Ultraschallelastographie und die MR-Elastographie. Die Elastographie wird häufig zur Erkennung von Tumoren eingesetzt.

Funktionsprinzip

Analog zur manuellen Palpation nutzt die Elastographie die Tatsache, dass Gewebe sich in ihrer Viskoelastizität unterscheiden. Insbesondere ist Tumorgewebe häufig anders komprimibel (fester, derber) als gesundes Gewebe. Mit der Elastographie wird versucht, die viskoelastischen Eigenschaften von Gewebe abzubilden.

Man unterscheidet innerhalb der Ultraschall-Elastographie zwischen quasi-statischen und dynamischen Verfahren. Bei Letzteren wird ein mechanischer Druck oder durch Ultraschall induzierter Stimulus angewandt.[1]

Quasi-statisches Verfahren
Bei den quasi-statischen Verfahren wird manuell Druck auf das Gewebe ausgeübt. Der Untersucher übt während der Ultraschalluntersuchung mit dem Ultraschallkopf, oder auch mit den Fingern, einen geringen Druck von außen auf das Organ aus. Eine Software wertet kleine Verschiebungen zwischen den einzelnen Bildern aus und zeigt die Dehnung ortsaufgelöst an. Bereiche, die stark gedehnt werden, sind weich, feste Bereiche lassen sich nicht komprimieren. Daher können Unterschiede der Elastizität im Gewebe dargestellt werden: Aus den Veränderungen des Echosignals lässt sich ein Elastogramm erstellen. Die quasi-statische Elastographie ist die älteste ultraschallbasierte Methode.[1]
Dynamisches Verfahren, mechanischer Stimulus
Bei der transienten Elastographie werden mechanische Vibrationen auf die Haut übertragen. Die Geschwindigkeit der dadurch im anliegenden Gewebe induzierten Scherwellen wird mittels gepulster Ultraschallwellen gemessen und daraus das Elastizitätsmodul ermittelt.[1]
Dynamisches Verfahren, ultraschallinduzierter Stimulus
Ein ultraschallinduzierter Stimulus führt zu lokalisierten Gewebeverschiebungen im Mikrometerbereich. Diese Veränderungen können mittels Acoustic Radiation Force Impulse (ARFI) Imaging oder ARFI-Quantification analysiert werden: Beim ARFI-Imaging werden Bilder vor und nach den Gewebeverschiebungen mittels Kreuzkorrelationsanalyse analysiert und daraus ein Bild der Gewebehärte erzeugt; bei der ARFI-Quantification hingegen wird die Geschwindigkeit von durch die Gewebeverschiebung generierten Scherwellen mittels Ultraschall gemessen; das „Shear Wave Speed (SWS) Imaging“, einer der neueren Ultraschall-Elastographie-Techniken, unterscheidet sich von der ARFI-Quantification durch die Art der Kurzimpulse und ihrer Auswertung.[1]

Bei der automatischen MRT-Elastographie wird durch automatisch von außen einwirkende Druckwellen das untersuchte Organ zyklisch komprimiert und wieder entlastet, während synchron (phasenstarr) Aufnahmen gemacht werden. Automatisch wird nach der Untersuchung ein Elastogramm gefertigt, das die Unterschiede in der Elastizität aufzeigt. So kann es möglich sein, gutartige von bösartigen Tumoren zu unterscheiden.

Die Sonoelastische Bildgebung ist ein ähnliches Verfahren, bei dem die Ausbreitungsgeschwindigkeit von Ultraschall im Gewebe durch die Doppler-Technik erfasst wird.

Anwendungen

Fachliteratur

  • H.-J. Sommerfeld, J. M. Garcia-Schürmann, J. Schewe u. a.: Prostatakarzinomdiagnostik durch Ultraschallelastographie – Vorstellung eines neuartigen Verfahrens und erste klinische Ergebnisse. In: Der Urologe, Ausgabe A. Bd. 42, Nr. 7, 2003, S. 941–945. PMID 12898038; doi:10.1007/s00120-003-0297-4.
  • J. Lorenzen, R. Sinkus, G. Adam: Elastographie: Quantitative Bildgebung der elastischen Gewebeeigenschaften. In: Fortschr. Röntgenstr. Bd. 175, Nr. 5, 2003, S. 623–630. PMID 12743853; doi:10.1055/s-2003-39199.
  • I. Sack: Magnetresonanz-Elastographie. In: Dtsch. med. Wochenschr. Bd. 133, Nr. 6, 2008, S. 247–251. PMID 18236351; doi:10.1055/s-2008-1017505.

Weblinks

Einzelnachweise

  1. a b c d Katharina Theresa Hollerieth: Präklinische und klinische Evaluation von Einflussfaktoren auf die Scherwellen-Elastographie am Beispiel der Transplantatniere. In: Dissertation. Technische Universität München, 31. August 2015, abgerufen am 13. Februar 2022. Abschnitt „2.1.3 Überblick über die verschiedenen Verfahren der Ultraschall-Sonografie“, S. 2–5.
  2. C. S. Pavlov, G. Casazza, D. Nikolova, E. Tsochatzis, A. K. Burroughs, V. T. Ivashkin, C. Gluud: Transient elastography for diagnosis of stages of hepatic fibrosis and cirrhosis in people with alcoholic liver disease. In: The Cochrane Database of Systematic Reviews. Band 1, Januar 2015, S. CD010542, doi:10.1002/14651858.CD010542.pub2, PMID 25612182, PMC 7081746 (freier Volltext).
  3. R. Prado-Costa, J. Rebelo, J. Monteiro-Barroso, A. S. Preto: Ultrasound elastography: compression elastography and shear-wave elastography in the assessment of tendon injury. In: Insights into Imaging. Band 9, Nr. 5, 2018, S. 791–814, doi:10.1007/s13244-018-0642-1, PMID 30120723, PMC 6206379 (freier Volltext).
  4. S. Sadeghi, C. Newman, D.H. Cortes: Change in skeletal muscle stiffness after running competition is dependent on both running distance and recovery time: a pilot study. In: PeerJ. Band 6, 2018, S. e4469, doi:10.7717/peerj.4469, PMID 29576951, PMC 5853607 (freier Volltext).
  5. A. E. Knight, C. A. Trutna, N. C. Rouze, L. D. Hobson-Webb, A. Caenen, F. Q. Jin, M. L. Palmeri, K. R. Nightingale: Full Characterization of in vivo Muscle as an Elastic, Incompressible, Transversely Isotropic Material Using Ultrasonic Rotational 3D Shear Wave Elasticity Imaging. In: IEEE Transactions on Medical Imaging. Band 41, Nr. 1, Januar 2022, S. 133–144, doi:10.1109/TMI.2021.3106278, PMID 34415833.
  6. Hans Ulrich Hecker, Angelika Steveling, Elmar T. Peuker, Kay Liebchen: Taschenatlas Akupunktur und Triggerpunkte, Haug Fachbuch, 2015, ISBN 978-3-8304-7842-3. S. 213.
  7. D. G. Simons: New views of myofascial trigger points: etiology and diagnosis. In: Archives of Physical Medicine and Rehabilitation. Band 89, Nr. 1, 2008, S. 157–159, doi:10.1016/j.apmr.2007.11.016, PMID 18164347.
  8. T. P. Do, G. F. Heldarskard, L. T. Kolding, J. Hvedstrup, H. W. Schytz: Myofascial trigger points in migraine and tension-type headache. In: The Journal of Headache and Pain. Band 19, Nr. 1, 2018, S. 84, doi:10.1186/s10194-018-0913-8, PMID 30203398, PMC 6134706 (freier Volltext).