Hodge-Zerlegung

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Elliptischer Komplex)

Die Hodge-Zerlegung beziehungsweise der Satz von Hodge ist eine zentrale Aussage der Hodge-Theorie. Diese Theorie verbindet die mathematischen Teilgebiete Analysis, Differentialgeometrie und algebraische Topologie. Benannt sind die Hodge-Zerlegung und die Hodge-Theorie nach dem Mathematiker William Vallance Douglas Hodge, der diese in den 1930er-Jahren als Erweiterung zur De-Rham-Kohomologie entwickelte.

Elliptischer Komplex

Mit werden glatte Schnitte in einem Vektorbündel bezeichnet. Sei eine orientierte Riemann'sche Mannigfaltigkeit und eine Folge von Vektorbündeln. Ein elliptischer Komplex ist eine Sequenz partieller Differentialoperatoren erster Ordnung

so dass die folgenden Eigenschaften gelten:

  • Die Folge ist ein Kokettenkomplex, das heißt, es gilt für alle und
  • für jedes ist die Sequenz der Hauptsymbole
exakt. Dabei bezeichnet die Bündelprojektion.

Die Räume können beispielsweise als die Räume der Differentialformen verstanden werden.

Satz von Hodge

Sei nun eine kompakte, orientierte Riemannsche Mannigfaltigkeit und die i-te Kohomologiegruppe des elliptischen Komplexes . Außerdem definiere einen (Laplace)-Operator

durch

Dies ist ein elliptischer Operator. Nun gilt:

  • Die -te Kohomologiegruppe ist für alle isomorph zum Kern von , das heißt
  • Die Dimension der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -ten Kohomologiegruppe ist für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i \in \Z} endlich
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dim H^i(E.,D_.) < \infty.}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma^\infty(E_i) = \ker(\Delta_i) \oplus R(D_{i-1}) \oplus R(D_i^*).}
Dabei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ker} den Kern und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} das Bild eines Operators.

Beispiel: De-Rham-Kohomologie

Der De-Rham-Komplex

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \to \mathcal{A}^0(M) \xrightarrow{\mathrm{d_0}} \mathcal{A}^1(M) \xrightarrow{\mathrm{d_1}} \ldots \xrightarrow{\mathrm{d}_{m-1}} \mathcal{A}^m(M) \to 0}

ist ein elliptischer Komplex. Die Räume Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{A}^i} sind wieder die Räume der Differentialformen i-ten Grades und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d}_i} ist die äußere Ableitung. Die dazugehörige Sequenz der Hauptsymbole ist der Koszul-Komplex. Der Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta = \mathrm{d}^* \mathrm{d} + \mathrm{d} \mathrm{d}^*} ist der Hodge-Laplace-Operator. Den Kern dieses Operators nennt man den Raum der harmonischen Differentialformen, da dieser ja analog zum Raum der harmonischen Funktionen definiert ist. Nach dem Satz von Hodge existiert nun ein Isomorphismus zwischen der i-ten De-Rham-Kohomologiegruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H^i_{\mathrm{dR}}(\mathcal{A}(M),\mathrm{d})} und dem Raum der harmonischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ker(\Delta_i)} Differentialformen vom Grad Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} .

Außerdem sind

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_i(M) := \dim(H^i_{\mathrm{dR}}(\mathcal{A}(M),\mathrm{d}))}

wohldefinierte Zahlen, da für kompakte Mannigfaltigkeiten die De-Rham-Kohomologiegruppen endliche Dimension haben. Diese Zahlen heißen Betti-Zahlen. Der Hodge-Stern-Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \star : \mathcal{A}^i(M) \to \mathcal{A}^{n-i}(M)} induziert auch einen Isomorphismus zwischen den Räumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ker(\Delta_i)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ker(\Delta_{n-i})} . Dies ist die Poincaré-Dualität und für die Betti-Zahlen gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_i(M) = b_{n-i}(M).}

Literatur

  • Liviu I. Nicolaescu: Lectures on the geometry of manifolds. 2nd edition. World Scientific, Singapore u. a. 2007, ISBN 978-981-270853-3.