Orthogonale Summe

aus Wikipedia, der freien Enzyklopädie
Der dreidimensionale euklidische Raum lässt sich als orthogonale Summe einer Ursprungsebene und einer dazu orthogonalen Ursprungsgeraden darstellen. Jeder Vektor des Raums ist dann die Summe eines Teils in der Ebene und eines Teils auf der Geraden.

Die orthogonale Summe ist im mathematischen Teilgebiet der linearen Algebra eine Konstruktion, die aus einer Familie von Skalarprodukträumen (oder allgemeineren Räumen) einen einzigen Skalarproduktraum, die orthogonale Summe der Familie, bildet, in den sich die Skalarprodukträume als paarweise orthogonale Unterräume einbetten lassen. Die orthogonale Summe ist gewissermaßen die minimal mögliche solcher Konstruktionen. Das auf diesem Raum definierte Skalarprodukt nennt man auch orthogonale Summe oder direkte Summe der einzelnen Skalarprodukte auf den einzelnen Räumen. In der Funktionalanalysis überträgt man diese Konstruktion auf Hilberträume und spricht dann auch von der (direkten) Hilbertsumme oder Hilbertraumsumme.

Äußere orthogonale Summe

Endliche Summen

Zunächst betrachtet man zwei Skalarprodukträume und über demselben Körper mit den Skalarprodukten bzw. . Die äußere orthogonale Summe

ist dann die äußere direkte Summe der beiden Vektorräume und , das heißt das kartesische Produkt der Mengen und mit komponentenweiser Addition und Skalarmultiplikation. Dieser Raum wird nun mit dem Skalarprodukt

für versehen, der orthogonalen Summe von und . Mittels der Einbettungen

  und  

lässt sich mit dem Untervektorraum und mit identifizieren, wobei der jeweilige Nullvektorraum ist. Ein Vektor wird dann einfach als Summe geschrieben, insofern man o. B. d. A. davon ausgehen kann, dass die Räume disjunkt sind. Sind die Vektorräume und über oder definiert und vollständig, also Hilberträume, dann ist der Raum bezüglich des Skalarprodukts ebenfalls vollständig. Induktiv lassen sich so auch orthogonale Summen für endlich viele Summanden definieren.

Man schreibt die orthogonale Summe auch als , etwa wenn auch andere -Summen auftreten.

Beliebige direkte Summen

Sei eine Familie von Skalarprodukträumen über demselben Körper mit Skalarprodukten zu einer beliebigen Indexmenge . Die direkte Summe der Vektorräume ist der Vektorraum

versehen mit der komponentenweisen Addition und Skalarmultiplikation. Auf diesem Raum von Familien von Vektoren definiert man das Skalarprodukt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle \, (x_i), (y_i) \,\rangle_{\bigoplus_i X_i}=\sum_{i \in I} \langle x_i,y_i \rangle_{X_i}}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i, y_i \in X_i} , welches wohldefiniert ist, da gemäß Konstruktion der direkten Summe nur endlich viele der Summanden ungleich null sind. Man erhält so die (algebraische) orthogonale direkte Summe. Mittels der Einbettungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_j \colon X_j\to\bigoplus_i X_i, x_j \mapsto (x_i)_{i \in I}}   mit   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i = \begin{cases} x_j & \text{für} \,\, i=j \\ 0 & \text{sonst} \end{cases}} ,

die Skalarprodukte erhalten, lassen sich die einzelnen Räume wieder mit Untervektorräumen identifizieren und man schreibt einen Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_i)_{i \in I}} dieses Raums ggf. einfach als Summe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum_{i \in I} x_i} , wobei jedoch nur endlich viele Summanden von null verschieden sein dürfen. Die orthogonale Summe einer leeren Familie ist der Nullvektorraum (versehen mit dem trivialen und einzig möglichen Skalarprodukt). Diese Konstruktion ist völlig analog für beliebige Familien von Moduln über demselben nicht notwendigerweise kommutativen Ring versehen mit beliebigen Sesquilinearformen als Sesquilinearform auf der direkten Summe definiert. Man definiert die direkte Summe auch für Sesquilinearformen, deren erstes und zweites Argument aus verschiedenen Moduln stammen, in diesem Fall kann man jedoch nicht mehr von Orthogonalität der eingebetteten Untermoduln sprechen.[1]

Beliebige Summen von Hilberträumen

Für eine solche unendliche direkte Summe gilt im Allgemeinen nicht mehr, dass die Summe von Hilberträumen wiederum ein Hilbertraum ist, die Vollständigkeit kann also verletzt werden. Daher definiert man für eine Familie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (H_i)_{i\in I}} von Hilberträumen über demselben Körper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex} ) mit Skalarprodukten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle\cdot,\cdot\rangle_{H_i}} die orthogonale Summe (bzw. eindeutig gesprochen die Hilbertraumsumme) als die Vervollständigung der obigen (zur Abgrenzung auch algebraisch genannten) orthogonalen direkten Summe. Dies ist gewissermaßen der kleinste Hilbertraum, der die algebraische orthogonale direkte Summe enthält. Man nennt diesen ebenfalls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigoplus_i H_i} . Konkret lässt sich dieser Raum wie folgt konstruieren:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigoplus_i H_i = \left\{S\colon I \to \bigcup_i H_i \mid \forall i: S_i\in H_i,\ \left(\|S_i\|_{H_i}\right)_i \in\ell^2(I) \right\} = \left\{S\colon I \to \bigcup_i H_i \mid \forall i: S(i)\in H_i,\ \sum_i \|S(i)\|_{H_i}^2 < \infty\right\}} ,

wobei die Endlichkeit der Summe so zu lesen ist, dass insbesondere stets nur höchstens abzählbar viele Summanden ungleich null sind. Addition und Skalarmultiplikation sind wiederum komponentenweise erklärt. Das Skalarprodukt definiert man wiederum als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle \, (x_i), (y_i) \,\rangle_{\bigoplus_i H_i}=\sum_{i \in I} \langle x_i,y_i \rangle_{H_i}} ,

wobei nun die Definition nur noch sicherstellt, dass nur abzählbar viele Summanden ungleich null sind. Die Summe ist also als absolut konvergente Reihe zu lesen. Die Einbettungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_i} liefern wie zuvor Identifikationen mit Unterhilberträumen und man schreibt einen Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_i)_{i \in I}} in der orthogonalen Summe ggf. einfach als Summe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum_{i \in I} x_i} , wobei nun nur noch gelten muss, dass die Normen der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i} quadratsummabel sind, es können also auch abzählbar unendlich viele von null verschiedene Summanden auftreten.

Die Konstruktion als Vervollständigung zeigt, dass die (algebraische) direkte Summe ein dichter Teilvektorraum der orthogonalen (Hilbertraum-)Summe ist, welche wiederum ein Teilvektorraum des direkten Produktes ist. Im Falle einer unendlichen Familie von Räumen ohne Nullvektorräume sind diese Inklusionen echt.[2]

Falls Verwechslungen mit der (algebraischen) direkten Summe von Vektorräumen möglich sind, schreibt man die orthogonale Summe auch als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle\overline{\bigoplus_i H_i}} . Als Spezialfall einer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell^p} -Summe schreibt man sie als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle\left(\bigoplus_i H_i\right)_2} .

Innere orthogonale Summe

Analog zur inneren direkten Summe von Vektorräumen spricht man im Spezialfall der orthogonalen Summe von paarweise orthogonalen Unterhilberträumen eines gegebenen Hilbertraums von einer inneren orthogonalen Summe. Während man bei der inneren orthogonalen Summe die Bedingung der paarweisen Orthogonalität stellt, kann eine äußere orthogonale Summe auch etwa von vielen gleichen Räumen gebildet werden, die dann „kopiert“ werden. Betrachtet man einen Skalarproduktraum, so ist die innere orthogonale Summe von Unterräumen nichts anderes als ihre innere direkte Vektorraumsumme, d. h. ihre lineare Hülle.

Die innere orthogonale (Hilbertraum-)Summe in einem Hilbertraum dagegen ist der Abschluss der linearen Hülle der Summanden. Sie kann leicht durch Orthogonalprojektionen charakterisiert werden: Seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (H_i)_{i\in I}} paarweise orthogonale Unterhilberträume eines Hilbertraums Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} , d. h. für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\neq j} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in H_i, y\in H_j} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\perp y} . Dann existieren die Orthogonalprojektionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_i\colon H\to H_i} auf die Unterhilberträume und deren Summe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi\colon H\to H, x\mapsto \sum_i \pi_i(x)} .

ist wiederum eine Orthogonalprojektion. Das Bild von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi} ist gerade die (innere) orthogonale Summe der Räume Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_i} .

Beispiele

  • Der Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell^2(I)} ist gerade der Spezialfall der orthonormalen Summe des eindimensionalen Hilbertraums Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} :
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell^2(I)=\bigoplus_{i\in I} K}
  • Für einen Unterhilbertraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U\subseteq H} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} gerade die innere orthogonale Summe von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} und seinem orthogonalen Komplement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U^\perp} :
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H=U\oplus U^\perp}
  • Der in der Quantenfeldtheorie wichtige antisymmetrische Fockraum ergibt sich als Vervollständigung der äußeren Algebra auf einem Hilbertraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} , bzw. als orthogonale Summe der äußeren Potenzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Lambda^i(H)} :
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_-(H)=\bigoplus_{i\in\N} \Lambda^i(H)}
  • Entsprechend ergibt sich der symmetrische Fockraum als Vervollständigung der symmetrischen Algebra, eines anderen Quotienten der Tensoralgebra, bzw. als orthogonale Summe der Räume Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^i(H)} der symmetrischen Tensoren der Stufe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} :
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_+(H)=\bigoplus_{i\in\N} S^i(H)}

Basen und Dimension

Seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_i\subset H_i} Orthonormalbasen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_i} . Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \bigcup_i \mu_i(B_i)} eine Orthonormalbasis von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \bigoplus_i H_i} . Diese Vereinigung ist disjunkt, da die eingebetteten Unterhilberträume paarweise orthogonal sind und ein Basiselement nie null ist. Somit ist die Hilbertraumdimension der orthogonalen Summe gleich der Summe der Dimensionen der einzelnen Hilberträume:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dim \bigoplus_i H_i = \left|\bigcup_i \mu_i(B_i)\right| = \sum_i \left|B_i\right| = \sum_i \dim H_i} .

Insbesondere gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n\oplus\R^m\cong \R^{n+m}} oder allgemeiner Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell^2(\alpha)\oplus\ell^2(\beta)\cong\ell^2(\alpha+\beta)} für Kardinalzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha, \beta} .

Kategorielle Eigenschaften

Im algebraischen Fall der orthogonalen Summe von Skalarprodukträumen bzw. Sesquilinearformen auf Moduln ist die orthogonale Summe der Räume ja nichts anderes als die direkte Summe, die einzelnen Skalarprodukte haben keinerlei Einfluss auf die Struktur dieses Raumes. Diese ist Koprodukt in der entsprechenden Kategorie von Moduln mit linearen Abbildungen. Die endliche direkte Summe ist zusätzlich ein (direktes) Produkt, während sie sich im unendlichen Fall im Allgemeinen von diesem unterscheidet.

Die orthogonale Summe endlich vieler Hilberträume ist analog dazu ein Biprodukt in der Kategorie der Hilberträume mit stetigen linearen Operatoren als Morphismen, d. h. sie ist sowohl (direktes) Produkt als auch Koprodukt (direkte Summe). Zudem ist dieses Biprodukt in dem Sinne kompatibel mit der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dagger} -Struktur, die durch die Adjungierung gegeben ist, dass

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_i^\dagger = \pi_i} und
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_i^\dagger = \mu_i} .

Da zudem für die Nullmorphismen (d. h. konkret die Nullfunktionen) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (0\colon X\to Y)^\dagger = (0\colon Y\to X)} für beliebige Hilberträume Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X,Y} gilt, spricht man von einer Biprodukt-Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dagger} -Kategorie.[3]

Dagegen ist die orthogonale Summe einer unendlichen Familie von Nicht-Nullräumen in dieser Kategorie weder Produkt noch Koprodukt: Um einzusehen, dass es sich um kein Produkt handelt, betrachte für Einheitsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i\in H_i} die Morphismen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_i\colon K\to H_i, \lambda \mapsto \lambda v_i} . Wäre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \bigoplus_i H_i} mit den Projektionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_i} ein Produkt, so müsste es eine stetige lineare Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle f\colon K\to \bigoplus_i H_i} geben mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_i=\pi_i f} , d. h. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(1)} hätte in jeder Komponente den Betrag Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1} , womit keine Quadratsummabilität mehr vorläge. Dual dazu betrachte für die Verletzung der Koprodukteigenschaft betrachte o. B. d. A. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I=\N\setminus \{0\}} (für überabzählbares Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} wähle überzählige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g_i} als null) und die Morphismen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g_i\colon H_i\to K, u \mapsto i\cdot \langle u,v \rangle_{H_i}} . Nun müsste ein Morphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle g\colon \bigoplus_i H_i \to K} existieren mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g_i=g\mu_i} . Ein solches Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} könnte jedoch allenfalls unbeschränkt und lediglich dicht definiert sein, denn für

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u=\sum_i \frac{1}{i}v_i\in \bigoplus_i H_i}

müsste

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g(u)=\sum_i i\cdot \langle \frac{1}{i}v_i, v_i \rangle = \sum_i 1}

sein, was jedoch divergiert. Tatsächlich existieren in dieser Kategorie weder beliebige (kleine) Produkte, noch Koprodukte.[4] Die Beispiele zeigen auch, dass viele denkbare Einschränkungen der Morphismen keine Abhilfe verschaffen – die Beispielmorphismen sind von Rang eins und damit sehr gutartig. Die Wahl linearer Kontraktionen (die im Falle der Banachräume zur Vollständigkeit der Kategorie führt und im Falle der Hilberträume unitäre Operatoren als die Isomorphismen fixiert) ist auch nicht möglich, in diesem Fall wäre die orthogonale Summe nicht einmal mehr endliches Produkt oder Koprodukt. Ein Ausweichen auf dicht definierte Operatoren ist nicht möglich, da diese nicht unter Komposition abgeschlossen sind und damit keine Kategorie bilden.

Siehe auch

  • Die orthogonale Summe ist der Spezialfall der p-Summe von Banachräumen für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=2} .
  • Ebenso ist die orthogonale Summe Spezialfall des direkten Integrals von Hilberträumen mit dem Zählmaß.
  • Das Hilbertraum-Tensorprodukt ist eine weitere wichtige Konstruktion auf Hilberträumen.

Einzelnachweise

  1. Nicolas Bourbaki: Algèbre (= Éléments de mathématique). Springer, Berlin 2007, ISBN 3-540-35338-0, Kap. 9, S. 13.
  2. Nicolas Bourbaki: V. Topological Vector Spaces (= Elements of Mathematics). Springer, Berlin 2003, ISBN 3-540-42338-9, V, S. 17 (Originaltitel: Éspaces vectoriels topologiques. Paris 1981. Übersetzt von H. G. Eggleston und S. Madan).
  3. John Harding, Orthomodularity in dagger biproduct categories (PDF; 301 kB), 2008, S. 5
  4. Chris Heunen, An Embedding Theorem for Hilbert Categories (PDF; 275 kB), in Theory and Applications of Categories, 2009, S. 339