Verallgemeinerter Laplace-Operator

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Hodge-Laplace-Operator)

Verallgemeinerte Laplace-Operatoren sind mathematische Objekte, welche in der Differentialgeometrie insbesondere in der Globalen Analysis untersucht werden. Die hier behandelten Operatoren sind Verallgemeinerungen des aus der reellen Analysis bekannten Laplace-Operators. Diese Verallgemeinerungen sind notwendig, um den Laplace-Operator auf riemannsche Mannigfaltigkeit definieren zu können. Eine wichtige Rolle spielen diese Operatoren in den Beweisen für den Atiyah-Singer-Indexsatz und den Atiyah-Bott-Fixpunktsatz.

Definition

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (M,g)} eine n-dimensionale riemannsche Mannigfaltigkeit, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi \colon E \to M} ein hermitesches Vektorbündel und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H \colon \Gamma^\infty(M,E) \to \Gamma^\infty(M,E)} ein geometrischer Differentialoperator zweiter Ordnung. Dieser heißt verallgemeinerter Laplace-Operator, falls für sein Hauptsymbol

für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in M} und gilt. Die Norm wird durch die riemannsche Metrik induziert und daher ist auch die Definition abhängig von der Metrik.

Beispiele

Im Folgenden werden einige bekannte Beispiele verallgemeinerter Laplace-Operatoren vorgestellt. Dazu sei wieder wie in der Definition eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -dimensionale, kompakte riemannsche Mannigfaltigkeit und ein Vektorbündel.

Laplace-Beltrami-Operator

Definition

Der Laplace-Beltrami-Operator ist definiert durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta f := \operatorname{div} (\operatorname{grad} f ).}

für zweimal stetig differenzierbare Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon M \to \R} . Dabei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{grad} f} den Gradienten der Funktion , ein Vektorfeld auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} . Die Divergenz eines Vektorfeldes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \in M} ist definiert als die Spur der linearen Abbildung , , wobei der Levi-Civita-Zusammenhang auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} ist. Hat man als Definitionsbereich eine offene Teilmenge des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n} , betrachtet als Mannigfaltigkeit über sich, so ist der Zusammenhang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla} die gewöhnliche Richtungsableitung und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{div}} die aus der reellen Analysis bekannte Divergenz eines Vektorfeldes. In diesem Fall erhält man den bekannten Laplace-Operator.

Lokale Koordinaten

Es seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1, \dots, x_n)} lokale Koordinaten auf und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{\partial}{\partial x_1}, \dots, \tfrac{\partial}{\partial x_n}} die zugehörigen Basisfelder des Tangentialbündels. Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g_{ij}} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 \le i,j \le n} seien die Komponenten der riemannschen Metrik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} bezüglich dieser Basis bezeichnet.

Die Darstellung des Gradienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{grad}} in lokalen Koordinaten lautet dann

.

Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (g^{ij})} die inverse Matrix der Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (g_{ij})} .

Die Darstellung der Divergenz eines Vektorfelds ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{div} X = \frac{1}{\sqrt{\det g}} \sum_i \frac{\partial}{\partial x_i} \left(\sqrt {\det g} X^i\right)} ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det g} die Determinante der Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (g_{ij})} ist.[1]

Setzt man diese Gleichungen zusammen, so erhält man die lokale Darstellung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta f = \operatorname{div}(\nabla f) = \frac{1}{\sqrt {\det g}} \sum_{i,j}\frac{\partial }{\partial x_i} \left(\sqrt{\det g}\, g^{ij} \frac{\partial f}{\partial x_j} \right)}

des Laplace-Beltrami-Operators bezüglich der Metrik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} . Setzt man in dieser Formel für den Laplace-Beltrami-Operator die Darstellung des euklidischen metrischen Tensors in Polar-, Zylinder- oder Kugelkoordinaten ein, so erhält man die Darstellung des üblichen Laplace-Operators in diesen Koordinatensystemen.

Hodge-Laplace-Operator

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \mathcal{A}(M) := \bigoplus_{i=1}^n \mathcal{A}^i(M)} der Raum der Differentialformen über und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d} : \mathcal{A}^i(M) \to \mathcal{A}^{i+1}(M)} die äußere Ableitung. Die adjungierte äußere Ableitung wird mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta} bezeichnet. Dann heißt der Operator

Hodge-Laplace- oder Laplace-de-Rham-Operator und ist ein verallgemeinerter Laplace-Operator.[2] Die Namen stammen daher, dass dieser Operator in der klassischen Hodge-Theorie und dem damit eng verbundenen De-Rham-Komplex Anwendung findet.

Dirac-Laplace-Operator

Ein Dirac-Operator

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D : \Gamma^\infty(M,E) \to \Gamma^\infty(M,E)}

ist gerade so definiert, dass er durch quadrieren einen verallgemeinerten Laplace-Operator induziert. Das heißt, ist ein verallgemeinerter Laplace-Operator und wird Dirac-Laplace-Operator genannt. Diese Laplace-Operatoren spielen eine wichtige Rolle im Beweis des Indexsatzes.

Bochner-Laplace-Operator

Definition

Der Bochner-Laplace-Operator wird mit dem metrischen Zusammenhang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^E \colon \Gamma(M,E) \to \Gamma(T^*M \otimes E)} auf dem Vektorbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} definiert. Sei außerdem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^{T^*M} \colon \Gamma(M,T^*M) \to \Gamma(T^*M \otimes T^*M)} der Levi-Civita-Zusammenhang und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^{T^*M \otimes E}} der durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^E} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^{T^*M}} induzierte Zusammenhang auf dem Bündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T^*M \otimes E}

dann ist der Bochner-Laplace-Operator durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta^E \cdot := - \operatorname{Tr}_g\left(\nabla^{T^*M \otimes E} \nabla^E \cdot \right)\,. }

definiert. Die Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Tr}_g} ist dabei die Tensorverjüngung bezüglich der riemannschen Metrik.[3]

Eine äquivalente Definition des Bochner-Laplace-Operators ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta^E := - (\nabla^E)^* \nabla^E.}

Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\nabla^E)^*} der adjungierte Operator bezüglich der riemannschen Metrik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} .

Lokale Darstellung

Wählt man als Zusammenhang den Levi-Civita-Zusammenhang so erhält man in lokalen Koordinaten mit dem orthonormalen Rahmen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e_1 , \ldots , e_n} die Darstellung[3]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta^E = - \sum_{i = 1}^n \left( \nabla^E_{e_i} \nabla^E_{e_i} - \nabla^E_{\nabla_{e_i}e_i}\right)\,. }

Eigenschaften

  • Ein verallgemeinerter Laplace-Operator ist ein geometrischer Differentialoperator der Ordnung zwei.
  • Da ein verallgemeinerter Laplace-Operator, wie in der Definition gefordert, das Hauptsymbol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\xi|^2} hat, ist er ein elliptischer Differentialoperator.
  • Jeder Differentialoperator zweiter Ordnung mit positiv definitem Hauptsymbol ist ein verallgemeinerter Laplace-Operator bezüglich einer geeigneten riemannschen Metrik auf der Mannigfaltigkeit und einer geeigneten hermiteschen Metrik auf dem Vektorbündel.
  • Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi, \psi \in \Gamma^{\infty}(M,E)} glatte Schnitte, so gilt
.
  • Der Operator ist nichtnegativ und wesentlich selbstadjungiert bezüglich . Die Definition des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^2} auf Mannigfaltigkeiten kann in dem Artikel über Dichtebündel nachgelesen werden.
  • Jeder verallgemeinerte Laplace-Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} bestimmt eindeutig einen Zusammenhang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^E} auf dem Vektorbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} und einen Schnitt , so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H = \Delta^E - B} gilt, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta^E} der Bochner-Laplace-Operator ist. Jeder verallgemeinerte Laplace-Operator stimmt also mit dem Bochner-Laplace-Operator bis auf eine Störung der Ordnung Null überein.

Quellen

  • Isaac Chavel: Eigenvalues in Riemannian Geometry (= Pure and Applied Mathematics 115). Academic Press, Orlando FL u. a. 1984, ISBN 0-12-170640-0.
  • Liviu I. Nicolaescu: Lectures on the geometry of manifolds. 2nd edition. World Scientific Pub Co., Singapore u. a. 2007, ISBN 978-981-270853-3.
  • Martin Schottenloher: Geometrie und Symmetrie in der Physik. Leitmotiv der Mathematischen Physik (= Vieweg-Lehrbuch Mathematische Physik). Vieweg, Braunschweig u. a. 1995, ISBN 3-528-06565-6.

Siehe auch

Einzelnachweise

  1. Torsten Fließbach: Allgemeine Relativitätstheorie. 4. Auflage, Elsevier – Spektrum Akademischer Verlag, 2003, Kapitel 17 Verallgemeinerte Vektoroperationen ISBN 3-8274-1356-7
  2. H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0691085425, S. 123
  3. a b Nicole Berline, Ezra Getzler, Michèle Vergne: Heat kernels and Dirac operators (= Grundlehren der mathematischen Wissenschaften 298). Berlin u. a. Springer 1992, ISBN 0-387-53340-0, S. 63–64.