Ergodische Transformation

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Ergodische Abbildung)

Ergodische Transformationen bzw. Ergodische Abbildungen sind Begriffe aus der Wahrscheinlichkeitstheorie und der Theorie dynamischer Systeme. Anschaulich bedeutet Ergodizität einer Abbildung, dass fast alle Punkte des Wahrscheinlichkeitsraumes in einem einzigen Orbit des dynamischen Systems liegen.

Definition

Es sei ein Wahrscheinlichkeitsmaß auf einem Messraum und eine maßerhaltende Abbildung.

Dann ist eine ergodische Transformation, genau dann wenn für jede Menge , die erfüllt, immer entweder

gilt. Dabei bezeichnet das Urbild von unter .

Es lassen sich noch weitere, äquivalente Definitionen angeben:

  • Kompakt lautet die obige Definition, dass die σ-Algebra der T-invarianten Ereignisse eine μ-triviale σ-Algebra sein soll.
  • Äquivalent dazu ist, dass jede -messbare Funktion fast sicher konstant ist.
  • Alternativ kann man auch fordern, dass die einzigen -invarianten Funktionen die konstanten Funktionen sind. Dabei heißt eine Funktion -invariant, wenn für fast alle die Gleichung gilt.

Eigenschaften

  • Falls invertierbar ist, dann gilt: weil alle Orbits
(mit ) einer ergodischen Transformation -invariant sind, muss insbesondere genau ein Orbit Maß 1 und alle anderen Orbits Maß 0 haben. Insbesondere definiert eine invertierbare ergodische Transformation eine ergodische Wirkung der Gruppe der ganzen Zahlen .
für -fast alle und jede Funktion .

Beispiele

  • Winkelverdopplung
Das Lebesgue-Maß ist ein ergodisches Maß für die Winkelverdopplungsabbildung .
Das Lebesgue-Maß ist ein ergodisches Maß für die Bäcker-Transformation
  • Rotation auf dem Einheitskreis
Betrachte das System bestehend aus der Menge , der Borel-σ-Algebra , dem Lebesguemaß und der Abbildung . Dieses System ist für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha\in\mathbb{R}} maßerhaltend. Es ist zudem genau dann ergodisch, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} nicht rational ist, sprich wenn gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha\in\mathbb{R}\setminus\mathbb{Q}} .
Betrachte den Grundraum der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} -Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1} -Folgen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega = \{0,1\}^{\mathbb N}} mit zugehöriger Produkt-σ-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A} und zugehörigem unendlichen Produktmaß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} definiert durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_i(\{0\}) = P_i(\{1\}) = \frac{1}{2}} . Bei der Bernoulli-Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} handelt es sich um dem Linksshift auf dem Grundraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega} , das heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} ist definiert als
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T: \{0,1\}^{\mathbb N} \to \{0,1\}^{\mathbb N},\; T(x)_n := x_{n+1}}
Dann ist das 4-Tupel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\{0,1\}^{\mathbb N}, \mathcal A, P, T)} ein ergodisches dynamisches System.
Sei der Grundraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega = [0,1]} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A = \mathcal B([0,1])} die entsprechende Borelsche σ-Algebra. Definiere die Gauß-Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} durch
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T: [0,1] \to [0,1],\; T(x) := \begin{cases} \tfrac1x \bmod1 & x \ne 0 \\ 0 & x = 0 \end{cases}}
Falls nun als Maß das Gaußmaß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \text{v}(A):=\tfrac{1}{\ln(2)}\int_{A}\,\tfrac{1}{1+x}\,\mathrm d\lambda(x)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\in\mathcal B([0,1])} , gewählt wird, so handelt es sich bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ([0,1],\mathcal B([0,1]),T,v)} um ein ergodisches dynamisches System.

Literatur

  • A. Katok und B. Hasselblatt: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995. ISBN 0-521-34187-6
  • B. Bekka und M. Mayer: Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces. London Math. Soc. Lec. Notes #269. Cambridge U. Press, Cambridge, 2000. ISBN 0-521-66030-0

Weblinks