Eulersche Phi-Funktion

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Eulersche Funktion)
Die ersten tausend Werte der Funktion

Die eulersche Phi-Funktion (andere Schreibweise: Eulersche φ-Funktion, auch eulersche Funktion genannt) ist eine zahlentheoretische Funktion. Sie gibt für jede positive natürliche Zahl an, wie viele zu teilerfremde natürliche Zahlen es gibt, die nicht größer als sind (auch als Totient von bezeichnet).

Für ist der Funktionswert gleich der Anzahl der zu teilerfremden positiven Reste modulo , liegt also im Bereich .

Der Name Phi-Funktion geht auf Leonhard Euler zurück.

Definition

Die Phi-Funktion ist definiert durch und

Dabei bezeichnet den größten gemeinsamen Teiler von und

Eine andere Schreibweise ist die Darstellung als Summe:

Beispiele

  • Die Zahl 1 enthält als Leeres Produkt keinen Primfaktor und ist zu allen Zahlen, auch zu sich selbst, teilerfremd, also ist
  • Die Zahl 6 ist zu genau zwei der sechs Zahlen von 1 bis 6 teilerfremd (nämlich zu 1 und zu 5), also ist
  • Die Zahl 13 ist als Primzahl zu jeder der zwölf Zahlen von 1 bis 12 teilerfremd (aber natürlich nicht zu 13), also ist

Die ersten 99 Werte der Phi-Funktion lauten:

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9
00+   01 01 02 02 04 02 06 04 06
10+ 04 10 04 12 06 08 08 16 06 18
20+ 08 12 10 22 08 20 12 18 12 28
30+ 08 30 16 20 16 24 12 36 18 24
40+ 16 40 12 42 20 24 22 46 16 42
50+ 20 32 24 52 18 40 24 36 28 58
60+ 16 60 30 36 32 48 20 66 32 44
70+ 24 70 24 72 36 40 36 60 24 78
80+ 32 54 40 82 24 64 42 56 40 88
90+ 24 72 44 60 46 72 32 96 42 60

Eigenschaften

Multiplikative Funktion

Die Phi-Funktion ist eine multiplikative zahlentheoretische Funktion, sodass für teilerfremde Zahlen und

gilt. Ein Beispiel dazu:

Eigenschaften

Die Funktion ordnet jedem die Anzahl der Einheiten im Restklassenring zu, also die Ordnung der primen Restklassengruppe.

Denn ist eine Einheit, also so gibt es ein mit was äquivalent zu also zur Existenz einer ganzen Zahl mit ist. Nach dem Lemma von Bézout ist dies äquivalent zur Teilerfremdheit von und

ist für stets eine gerade Zahl.

Ist die Anzahl der Elemente im Bild die nicht größer als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} sind, dann gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} \frac{a_n}{n} = 0.} Das Bild der Phi-Funktion besitzt also die natürliche Dichte 0.

Erzeugende Funktion

Die Dirichlet-erzeugende Funktion der Phi-Funktion hängt mit der riemannschen Zetafunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \zeta} zusammen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n=1}^\infty \frac{\varphi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}}

Berechnung

Primzahlen

Da eine Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} nur durch 1 und sich selbst teilbar ist, ist sie zu den Zahlen 1 bis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p - 1} teilerfremd. Weil sie größer als 1 ist, ist sie außerdem nicht zu sich selbst teilerfremd. Es gilt daher

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(p) = p - 1.}

Potenz von Primzahlen

Eine Potenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p^k} mit einer Primzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} als Basis und dem Exponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \in \N^+} hat nur den einen Primfaktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p.} Daher hat Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p^k} nur mit Vielfachen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} einen von 1 verschiedenen gemeinsamen Teiler. Im Bereich von 1 bis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p^k} sind das die Zahlen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 \cdot p, \; 2 \cdot p, \; 3 \cdot p, \; \dotsc, \; p^{k-1} \cdot p = p^k} .

Das sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p^{k-1}} Zahlen, die nicht teilerfremd zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p^k} sind. Für die eulersche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} -Funktion gilt deshalb

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)= p^k \left(1-\frac1p\right)} .

Beispiel:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(16) = \varphi(2^4) = 2^4 - 2^3 = 2^3 \cdot (2-1) = 2^4 \cdot \left(1-\frac12\right) = 8} .

Allgemeine Berechnungsformel

Der Wert der eulerschen Phi-Funktion lässt sich für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \in \N^+} aus dessen kanonischer Primfaktorzerlegung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = \prod_{p \mid n} p^{k_p}}

berechnen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(n) = \prod_{p \mid n} p^{k_p-1}(p-1) = n \prod_{p \mid n}\left(1 - \frac{1}{p}\right)} ,

wobei die Produkte über alle Primzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} , die Teiler von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} sind, gebildet werden. Diese Formel folgt direkt aus der Multiplikativität der Phi-Funktion und der Formel für Primzahlpotenzen.

Beispiel:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(72) = \varphi(2^3 \cdot 3^2) = 2^{3-1} \cdot (2-1) \cdot 3^{2-1} \cdot (3-1) = 2^2 \cdot 1\cdot 3\cdot 2 = 24}

oder

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(72) = 72 \cdot (1 - \tfrac{1}{2}) \cdot (1 - \tfrac{1}{3}) = 24} .

Durchschnittliche Größenordnung

Mit der riemannschen Zetafunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \zeta} , dem Landau-Symbol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{O}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \zeta(2) = \tfrac{\pi^2}{6}} gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n=1}^N \varphi(n) = \frac{1}{2 \zeta(2)} N^2 + \mathcal{O}(N \log N) = \frac{3}{\pi^2} N^2 + \mathcal{O}(N \log N)}

Wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n=1}^N \tfrac{6}{\pi^2} n = \tfrac{6}{\pi^2} \tfrac{N(N+1)}{2} = \tfrac{3}{\pi^2} N^2 + \mathcal{O}(N)} sind diese beiden Summen asymptotisch gleich:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{N \to \infty} \frac{\sum_{n=1}^N \varphi(n)}{\sum_{n=1}^N \frac{6}{\pi^2} n} = \lim_{N \to \infty} \frac{\frac{3}{\pi^2} + \mathcal{O}\left(\frac{\log N}{N}\right)}{\frac{3}{\pi^2} + \mathcal{O}\left(\frac{1}{N}\right)} = 1}

Man sagt dazu auch:

  • Die durchschnittliche Größenordnung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(n)} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{6}{\pi^2} n.}

Fourier-Transformation

Die eulersche Phifunktion ist die diskrete Fourier-Transformation des ggT, ausgewertet an der Stelle 1:[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \mathcal{F} \left\{ \mathbf{x} \right\}[m] &= \sum\limits_{k=1}^n x_k \cdot e^{-2 \pi i \frac{mk}{n}}, \quad \mathbf{x_k} = \left\{ \operatorname{ggT}(k,n) \right \} \quad\text{für }\, k \in \left\{1, \dotsc, n \right\} \\ \varphi(n) &= \mathcal{F} \left\{ \mathbf{x} \right\}[1] = \sum\limits_{k=1}^n \operatorname{ggT}(k,n) e^{-2 \pi i \frac{k}{n}} \end{align}}

Nimmt man auf beiden Seiten den Realteil, ergibt sich die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(n) = \sum\limits_{k=1}^n \operatorname{ggT}(k,n) \cos\left(2 \pi \frac{k}{n}\right).}

Weitere Beziehungen

  • Es gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(n) > \frac{\sqrt n}{2},} für ungerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} sogar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(n) \geq \sqrt n.}
  • Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \geq 2} gilt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{1 \leq j \leq n-1 \atop \operatorname{ggT}(n,j) = 1} j = \frac{n}{2} \varphi(n)}
  • Für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \in \N^+} gilt:[2]
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{d > 0 \atop d \mid n} \varphi(d) = n}
Beispiel: Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=100} ist die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T(n) := \{t \in\ N^+ \; \big| \; t \vert n\}} der positiven Teiler von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} durch
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T(100) = T(2^2 \cdot 5^2) = \left\{2^m \cdot 5^n \mid m \in \{0, 1, 2\}, n \in \{0, 1, 2\}\right\} = \{1, 2, 4, 5, 10, 20, 25, 50, 100\}}
gegeben. Addition der zugehörigen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |T(100)| = (2+1)(2+1) = 9} Gleichungen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \varphi(1) &= 1\\ \varphi(2) &= 1\\ \varphi(4) &= 2\\ \varphi(5) &= 4\\ \varphi(10) &= 4\\ \varphi(20) &= 8\\ \varphi(25) &= 20\\ \varphi(50) &= 20\\ \varphi(100) &= 40 \end{align}}
ergibt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \sum_{d > 0 \atop d \mid 100} \varphi(d) &= \varphi(1) + \varphi(2) + \varphi(4) + \varphi(5) + \varphi(10) + \varphi(20) + \varphi(25) + \varphi(50) + \varphi(100) \\&= 1 + 1 + 2 + 4 + 4 + 8 + 20 + 20 + 40 =100 \end{align}}

Bedeutung

Eine wichtige Anwendung findet die Phi-Funktion im Satz von Fermat-Euler:

Wenn zwei natürliche Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} teilerfremd sind, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} ein Teiler von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a^{\varphi(m)} - 1 \colon}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{ggT}(a,m) = 1 \Rightarrow m \mid a^{\varphi(m)} - 1}

Etwas anders formuliert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{ggT}(a,m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \bmod m}

Ein Spezialfall (für Primzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} ) dieses Satzes ist der kleine fermatsche Satz:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \nmid a \Rightarrow p \mid a^{p-1} - 1}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \nmid a \Rightarrow a^{p-1} \equiv 1 \bmod p}

Der Satz von Fermat-Euler findet unter anderem Anwendung beim Erzeugen von Schlüsseln für das RSA-Verfahren in der Kryptographie.

Die Phi-Funktion kommt auch in dem Kriterium für die Konstruierbarkeit eines Polygons vor.

Siehe auch

Weblinks

  • Eric W. Weisstein: Totient Function. In: MathWorld (englisch).
  • Folge der Funktionswerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi(n)\colon} Folge A000010 in OEIS
  • Die ersten 100.000 Werte der Phi-Funktion (OEIS)
  • Phi-Rechner (englisch)
  • Florian Luca, Herman te Riele: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi} and Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} : from Euler to Erdös. Nieuw Archief voor Wiskunde, März 2011 (PDF; 304 kB).
  • Video: Die Eulersche Phi-Funktion. Pädagogische Hochschule Heidelberg (PHHD) 2012, zur Verfügung gestellt von der Technischen Informationsbibliothek (TIB), doi:10.5446/19894.

Einzelnachweise

  1. Wolfgang Schramm: The Fourier transform of functions of the greatest common divisor. In: University of West Georgia, Karls-Universität Prag (Hrsg.): Integers Electronic Journal of Combinatorial Number Theory. 8, 2008, S. A50. Abgerufen am 31. Mai 2021.
  2. Johannes Buchmann: Einführung in die Kryptographie. Theorem 3.8.4.