Fehlermodell
Ein Fehlermodell klassifiziert Messfehler, hier die der Metrologie. Die Eigenschaften der Messfehler, die in den Messprozess einfließen, sind durch die physikalische Arbeitsweise der Messapparatur festgelegt.
Bezeichne
- die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l.} von n Wiederholungsmessungen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0} den wahren Wert der Messgröße
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} den unbekannten systematischen Messfehler, der allen n Wiederholungsmessungen gemeinsam ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon_l} den zufälligen Messfehler.
Dann liegt der Revision der Gaußschen Fehlerrechnung eine Fehlergleichung folgender Form zugrunde:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_l = x_0 + f + \varepsilon_l; \quad -f_s \le f = const. \le +f_s}
Die Messwerte einer stationär arbeitenden Messapparatur streuen also nicht um den wahren Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0} der Messgröße, sondern um den seitens des unbekannten systematischen Messfehlers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} verschobenen Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0 + f} . Letzteren bezeichnet die Statistik als belasteten oder nicht erwartungstreuen Erwartungswert – nicht erwartungstreu soll heißen: der wahre Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0} wurde verfehlt.
Weder noch Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x_{0}+f} sind dem Experimentator bekannt.
Interpretation unbekannter systematischer Fehler
Gegenwärtig werden unbekannte systematische Fehler unterschiedlich interpretiert:
- Der ISO-Guide weist ihnen formal eine Zufallsvariable zu und dieser, per Postulat, eine Rechteckdichte, definiert über dem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -f_s \ldots f_s} . Implizit wird unterstellt, es sei zulässig, die Realisierungen jener Zufallsvariable im Wesentlichen auf ihre einfache Standardabweichung zu begrenzen, d. h. auf ein Intervall der Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pm f_s/\sqrt3} . Wie zu zeigen ist, bringt diese Interpretation allerdings nichtbehebbare mathematische und physikalische Probleme mit sich; siehe Messunsicherheit.
- Die zum Guide alternative Revision der Gaußschen Fehlerrechnung betrachtet den unbekannten systematischen Messfehler – physikalisch realistischer – als zeitkonstante, durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -f_s \ldots f_s} eingegrenzte Größe, die im Sinne einer worst-case-Abschätzung zum Tragen zu bringen ist, d. h. in Gestalt der Intervallgrenzen Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \pm f_{s}} . Diese Vorgehensweise bedingt eine neue Art der Fehlerrechnung, die sich nicht durch Fortschreiben der Gaußschen Fehlerrechnung darstellen lässt. Andererseits führt der neue Formalismus zu sicheren Messunsicherheiten, insbesondere zeigt er sich frei von Inkonsistenzen.