Gaußsches Maß

aus Wikipedia, der freien Enzyklopädie

Als gaußsche Maße bezeichnet man die der Normalverteilung zugrundeliegenden Maße. Der Begriff wird insbesondere auf unendlichdimensionale Räume ausgedehnt. Separable Banachräume mit gaußschen Maße nennt man abstrakte Wienerräume, welche von Leonard Gross eingeführt wurden. Jedoch betrachtete schon Norbert Wiener in seiner ursprünglichen Arbeit einen unendlichdimensionalen Raum, allerdings für reelle Funktionen über dem Einheitsintervall, siehe klassischer Wiener-Raum.

Die Theorie der gaußschen Maße liegt zwischen der Stochastik und der Funktionalanalysis. Sie hat unter anderem Anwendungen im Malliavin-Kalkül, der Quantenfeldtheorie, der Finanzmathematik sowie der statistischen Physik.

Analysis auf unendlichdimensionalen Räumen

Damit man die Analysis von auf unendlichdimensionalen Räumen fortsetzen kann, muss man beachten, dass auf solchen Räumen kein vernünftiges Lebesgue-Maß existiert. Mit dem Lemma von Riesz lässt sich zeigen, dass das einzige translationsinvariante Borel-Maß, welches dem offenen Ball ein positives Maß zuordnet, das triviale Null-Maß ist.

Damit der Raum vernünftige topologische Eigenschaften hat, betrachtet man einen separablen Banachraum.

Gaußsche Maße

Gaußsche Maße auf ℝ und ℝd

Ein borelsches Wahrscheinlichkeitsmaß auf nennt man gaußsches Maß mit Varianz , falls im Fall für jede Borelmenge gilt

.

wobei das Lebesgue-Maß bezeichnet.

Im Fall ist das gaußsche Maß das Dirac-Maß .

Analog erhält man auf für das -dimensionale gaußsche Maß

.

wobei das -dimensionale Lebesgue-Maß bezeichnet. Man nennt ein gaußsches Maß zentriert wenn , standard wenn zusätzlich und degeneriert wenn .

Äquivalente Formulierung

Man nennt ein Borel-Maß ein gaußsches Maß auf , falls für jedes lineare Funktional auf das Pushforward-Maß ein gaußsches Maß ist.

Gaußsche Maße auf topologischen Vektorräumen

Sei ein topologischer Vektorraum und eine Borel-Wahrscheinlichkeitsmaß auf . Dann ist ein gaußsches Maß, falls für jedes stetige lineare Funktional die Abbildung eine gaußsche Zufallsvariable ist.

Das heißt also, ist ein gaußsches Maß auf der borelschen σ-Algebra , falls für jedes stetige lineare Funktional auf das Pushforward-Maß ein gaußsches Maß auf ist.

Gaußsche Maße auf Banach-Räumen

Ist ein separabler Banachraum, dann erhält man die Gaußschen Maße auf Banach-Räumen.

Eigenschaften

  • Sei ein lokalkonvexer Raum mit gaußschem Maß und , dann hat die Fourier-Transformation von folgende Form
wobei ein lineares Funktional ist und eine symmetrische Bilinearform auf , so dass die quadratische Form positiv ist. ist der Kovarianzoperator.

Beispiele

Klassisches Wiener-Maß

Sei der Raum aller stetigen Pfade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi:[0,\infty)\to \mathbb{R}^n} mit der Eigenschaft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi(0)=0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim\limits_{t\to\infty}|\tfrac{\xi(t)}{t}|=0} . Weiter setzen wir voraus, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Xi(\mathbb{R}^n)} ein separabler Banachraum ist.

Die Verteilung der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}^n} -brownschen Bewegung induziert das klassische Wiener-Maß auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Xi(\mathbb{R}^n)} .

Weitere Beispiele

  • Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma_n:=\gamma_{0,1}} ein standard gaußsches Maß auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}} , dann ist das Produktmaß
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma^{(\infty)}=\bigotimes\limits_{n=1}^{\infty}\gamma_n}
ein zentriertes gaußsches Maß auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}^{\infty}}
  • Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein lokalkonvexer Raum mit gaußschem Maß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma} und weiter sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T=X^*} . Wir definieren die Einbettung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i:X\to \mathbb{R}^T} durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\to x(f):=f(x)} für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\in T} . Dann ist das Bild von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma} unter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} ein gaußsches Maß auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}^T} .

Literatur

  • Vladimir I. Bogachev: Gaussian Measures. Hrsg.: American Mathematical Society. 1998, ISBN 978-1-4704-1869-4.
  • Daniel W. Stroock: Probability Theory: An Analytic View. Hrsg.: Cambridge University Press. 2010, ISBN 978-0-521-13250-3.