Topologischer Vektorraum
Ein topologischer Vektorraum ist ein Vektorraum, auf dem neben seiner algebraischen auch noch eine damit verträgliche topologische Struktur definiert ist.
Definition
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb K \in \{\R,\Complex \} } . Ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb K} -Vektorraum , der zugleich topologischer Raum ist, heißt topologischer Vektorraum, wenn folgende Verträglichkeitsaxiome gelten:
- Die Vektoraddition Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E \times E \to E} ist stetig,
- Die Skalarmultiplikation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb K \times E \to E} ist stetig.
Bemerkungen
- Es ist wichtig, dass die beiden genannten Abbildungen nicht nur komponentenweise stetig sind.
- Manchmal wird auch zusätzlich gefordert, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} ein Kolmogoroff-Raum (d. h. T0-Raum) ist, also verschiedene Punkte stets topologisch unterscheidbar sind. Daraus folgt für topologische Vektorräume bereits die Hausdorffeigenschaft (d. h. T2-Raum).
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (E,+)} ist eine topologische Gruppe.
- Für einen topologischen Vektorraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} lässt sich in sinnvoller Art und Weise der topologische Dualraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E'} erklären.
- Ist der topologische Vektorraum ein Hausdorff-Raum, so sind die Abbildungen, die eine Verschiebung um einen bestimmten Vektor oder eine Streckung um einen Skalar darstellen, Homöomorphismen. In diesem Fall reicht es, topologische Eigenschaften des Raumes im Ursprung zu betrachten, da jede Menge homöomorph in den Ursprung verschoben werden kann.
Beispiele
- Die wichtigsten Beispiele sind die normierten Vektorräume, darunter die Banachräume. Wichtige konkrete Beispiele sind hier der Euklidische Vektorraum, die -Räume (mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 \le p \le \infty} ) und Sobolev-Räume.
- Allgemeinere Beispiele sind die lokalkonvexen Räume, darunter die Fréchet-Räume. Wichtige konkrete Beispiele sind hier die Räume der Distributionentheorie, also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}\left(\Omega\right)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{S}\left(\Omega\right)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{E}\left(\Omega\right)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{E}'\left(\Omega\right)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{S}'\left(\Omega\right)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{D}'\left(\Omega\right)} .
- Die Menge Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \textstyle \ell ^{p}:=\{(x_{n})_{n}\in {\mathbb {K} }^{\mathbb {N} };\,\sum _{n=1}^{\infty }|x_{n}|^{p}<\infty \}} ist ein Vektorraum, der für Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle 0<p<1} mit der Metrik Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \textstyle d_{p}((x_{n})_{n},(y_{n})_{n}):=\sum _{n=1}^{\infty }|x_{n}-y_{n}|^{p}} zu einem topologischen Vektorraum wird, der nicht lokalkonvex ist.
- Allgemeiner seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,\mu)} ein Maßraum und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle 0<p<1} . Dann macht die Metrik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle d_p(f,g):=\int_X|f(x)-g(x)|^p \mathrm d\mu(x) } den Lp-Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^p(X,\mu)} zu einem topologischen Vektorraum, der im Allgemeinen nicht lokalkonvex ist. Ist und das Zählmaß, so erhält man das obige Beispiel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell^p} . Der Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^p([0,1])} besitzt außer dem Nullfunktional kein weiteres stetiges lineares Funktional.
- Jeder Vektorraum ist mit der chaotischen Topologie, das heißt nur die leere Menge und der gesamte Raum sind offen, ein topologischer Vektorraum.
Topologische Eigenschaften
- Jeder topologische Vektorraum ist als abelsche, topologische Gruppe ein uniformer Raum. Damit ist er insbesondere stets ein R0-Raum und erfüllt das Trennungsaxiom T3 (in der Bedeutung, dass T0 nicht miteingeschlossen ist). Mittels dieser uniformen Struktur kann man Vollständigkeit und gleichmäßige Stetigkeit definieren. Jeder topologische Vektorraum kann vervollständigt werden und lineare stetige Abbildungen zwischen topologischen Vektorräumen sind gleichmäßig stetig.
- Für einen topologischen Vektorraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} gilt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ist T0 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Leftrightarrow} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ist T1 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ist T2 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ist ein Tychonoff-Raum.
- Jeder topologische Vektorraum besitzt eine Nullumgebungsbasis aus abgeschlossenen und ausgewogenen Mengen. Nach dem Normierbarkeitskriterium von Kolmogoroff ist ein hausdorffscher topologischer Vektorraum genau dann normierbar, wenn er eine beschränkte und konvexe Nullumgebung besitzt.
- In lokalkonvexen hausdorffschen topologischen Vektorräumen gilt der Satz von Hahn-Banach, sodass die Existenz „vieler“ stetiger linearer Funktionale gesichert ist. Diese Tatsache erlaubt es, für solche Räume eine reichhaltige Dualitätstheorie aufzustellen, die für allgemeine topologische Vektorräume in dieser Form nicht gilt. Im Extremfall, wie im obigen Beispiel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^p([0,1])} , ist das Nullfunktional das einzige stetige lineare Funktional.
Siehe auch
Literatur
- Helmut H. Schaefer: Topological Vector Spaces. Springer, New York u. a. 1971, ISBN 0-387-98726-6.
- Hans Jarchow: Locally Convex Spaces. Teubner, Stuttgart 1981, ISBN 3-519-02224-9.