Gebundener Zustand

aus Wikipedia, der freien Enzyklopädie

Ein gebundener Zustand oder auch Bindungszustand ist in der Physik ein Verbund aus zwei oder mehr Körpern oder Teilchen, die sich wie ein einziges Objekt verhalten. Die Abgrenzung kann gegenüber dem Zustand gelten, in dem ein einzelnes (elementares oder zusammengesetztes) Teilchen von den anderen entfernt (frei) ist, oder auch gegenüber dem Fall, dass sämtliche Teile des Ganzen voneinander entfernt sind (dispers). Ein gebundener Zustand ist im Allgemeinen stabil, also ein stationärer Zustand mit unendlicher Lebensdauer.[1]

In der Quantenmechanik ist (sofern die Teilchenzahl erhalten bleibt) der gebundene Zustand ein Zustand im Hilbertraum, der zu zwei oder mehr Teilchen korrespondiert, deren Wechselwirkungsenergie negativ ist. Daher können die Teilchen nicht getrennt werden, solange keine Energie aufgewendet wird. Diese zum Lösen der Bindung nötige Energie heißt Bindungsenergie. Die Energieniveaus des gebundenen Zustands sind, im Gegensatz zum kontinuierlichen Spektrum einzelner Teilchen, diskret.

Im Allgemeinen kann ein stabiler gebundener Zustand in einem Potenzial existieren, wenn es eine stehende Wellenfunktion gibt. Die Energien dieser Wellenfunktionen sind negativ.

Es gibt auch instabile gebundene Zustände mit positiver Wechselwirkungsenergie. Das ist möglich, wenn eine Energiebarriere vorhanden ist, die für den Zerfall durchtunnelt werden muss. Dies ist der Fall für einige Radionuklide in ihrem Grundzustand und allgemein für viele angeregte Zustände von Atomkernen.

In relativistischen Quantenfeldtheorien zeigt sich ein gebundener Zustand mit n Teilchen der Massen m1, …, mn als ein Pol in der S-Matrix mit einer Masse, die kleiner ist als m1+…+mn (Massendefekt). Ein instabiler gebundener Zustand (siehe Resonanz) stellt sich als Pol mit komplexer Schwerpunktmasse dar.

Beispiele

 
 
 
 
Materie-
teilchen
 
 
 
 
 
 
 
 
 
Austausch-
teilchen
 
 
 
Higgs-Boson
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Quarks
 
Leptonen
 
Gluonen
 
W-Bosonen,
Z-Boson
 
Photon
 
Graviton (?)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hadronen
 
 
 
 
 
 
Starke
Wechsel-
wirkung
 
Schwache
Wechsel-
wirkung
 
Elektro-
magnetische W’wirkung
 
Gravitation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mesonen
 
Baryonen
 
 
 
 
Quanten-
chromo-
dynamik
 
 
 
 
 
 
Quanten-
elektro-
dynamik
 
Quanten-
gravitation
(?)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Atomkerne
 
 
 
 
 
 
 
 
 
 
 
Elektro-
schwache
W’wirkung
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Atome
 
 
 
 
 
Große
vereinheitlichte
Theorie
(?)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Moleküle
 
 
 
 
 
 
 
 
Weltformel (?)
 
 
 
 
 
 
Ein Überblick über die verschiedenen Familien von Elementar­teilchen und zusammen­gesetzten Teilchen und die Theorien, welche ihre Wechsel­wirkungen beschreiben.
Elementarteilchen zusammengesetzte Teilchen Wechselwirkung theoretische Beschreibung

Mathematische Struktur in der Quantenmechanik

Sei ein komplex separabler Hilbertraum, sei eine ein-parametrige Gruppe mit unitären Operatoren auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H } und ein statistischer Operator auf . Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} eine Observable auf und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(A,\rho)} die induzierte Wahrscheinlichkeitsverteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} in Bezug auf auf der Borel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} -Algebra auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}} . Die Entwicklung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho} induziert durch wird gebunden in Bezug auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} genannt, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{R \rightarrow \infty} \sum_{t \geq t_0} \mu(A,\rho(t))(\mathbb{R}_{> R}) = 0 } , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}_{>R} = \lbrace x \in \mathbb{R} \mid x > R \rbrace } .

Beispiel: Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H = L^2(\mathbb{R}) } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} die Orts-Observable. Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho = \rho(0) \in H} mit einem kompakten Träger und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle [-1,1]\subseteq \mathrm {Supp} (\rho )} .

  • Wenn die Zustandsentwicklung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho} „das Wellenpaket konstant nach rechts bewegt“, z. B. wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [t-1,t+1] \in \mathrm{Supp}(\rho(t)) } für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t \geq 0} , dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho} in Bezug auf den Ort kein gebundener Zustand.
  • Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho} sich mit der Zeit nicht ändert, z. B. Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \rho (t)=\rho } für alle , dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho} in Bezug auf den Ort ein gebundener Zustand.
  • Allgemeiner: Wenn die Zeitentwicklung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho}Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho} nur innerhalb eines begrenzten Bereiches bewegt“, dann ist ein gebundener Zustand bezogen auf den Ort.

Einzelnachweise

  1. Albert Messiah: Quantenmechanik. Walter de Gruyter, 1991, ISBN 3-11-011452-6, S. 358 (eingeschränkte Vorschau in der Google-Buchsuche).