Glatter Raum

aus Wikipedia, der freien Enzyklopädie

Glatte normierte Räume werden im mathematischen Teilgebiet der Funktionalanalysis untersucht. Es handelt sich um normierte Räume, deren Norm eine gewisse Glattheitseigenschaft hat.

Definitionen

Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,\|\cdot\|)} ein normierter Raum, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_X := \{x\in X;\,\|x\|\le 1\}} sei die Einheitskugel und ihr Rand, die sogenannte Einheitssphäre. Nach dem Satz von Hahn-Banach gibt es zu jedem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in S_X} ein stetiges, lineares Funktional Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_x\in X^*} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|f_x\| = 1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_x(x)=1} .

Dieses Funktional Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_x} definiert die Hyperebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{y\in X;\, f_x(y)=1\}} , die Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle B_{X}} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} schneidet und keinen Punkt aus dem Inneren der Einheitskugel enthält. Eine solche Hyperebene nennt man eine Stützhyperebene an Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} , das Funktional Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_x} heißt Stützfunktional an Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} . Stellt man sich eine Hyperebene als lineare Approximation der Kugeloberfläche vor, so liegt es nahe, einen Punkt Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x\in S_{X}} einen Glattheitspunkt zu nennen, wenn es genau eine Stützhyperebene an Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} gibt, das heißt, wenn es genau ein Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f_{x}\in X^{*}} gibt mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|f_x\| = 1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_x(x)=1} .

Ein normierter Raum heißt glatt, wenn jeder Punkt der Einheitssphäre ein Glattheitspunkt ist. Die Einheitskugel eines glatten Raums ist damit eine glatte konvexe Menge.

Stützabbildung

Man nennt eine Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f:X\setminus\{0\} \rightarrow X^*\setminus\{0\}, x\mapsto f_x} , eine Stützabbildung, falls folgendes gilt:[1]

  • Aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|x\|=1} folgt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|f_x\|=f_x(x) = 1}
  • Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda > 0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in X\setminus\{0\}} gilt Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f_{\lambda x}=\lambda f_{x}} .

Definitionsgemäß gibt es in einem glatten Raum genau eine Stützabbildung, man kann also von der Stützabbildung eines glatten Raums sprechen. Man kann zeigen, dass diese norm-schwach*-stetig ist, das heißt stetig, wenn man auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\setminus\{0\}} die Normtopologie und auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X^*\setminus\{0\}} die schwach-*-Topologie betrachtet.

Beispiele

Zweidimensionaler Raum

Glattheit hängt von der Norm ab und kann beim Übergang zu einer äquivalenten Norm verloren gehen. Das zeigt sich schon am Beispiel des zweidimensionalen Raums . Versieht man den zweidimensionalen Raum mit der euklidischen Norm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|.\|_2} , so ist die Einheitssphäre ein Kreis und jeder Punkt hat genau eine Stützhyperebene, nämlich die Tangente an diesem Punkt, das heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\R^2,\|.\|_2)} ist glatt. Betrachtet man auf dem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^2} die Maximumsnorm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|.\|_\infty} , so ist die „Einheitskugel“ ein Quadrat. An jeder Ecke des Quadrates gibt es unendlich viele Stützhyperebenen, alle anderen Punkte sind Glattheitspunkte. Damit ein Raum glatt ist, muss aber jeder Punkt der Einheitssphäre ein Glattheitspunkt sein, das heißt ist nicht glatt. Da die euklidische Norm und die Maximumsnorm auf dem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^2} äquivalent sind, sieht man an diesem Beispiel, dass die Glattheit beim Übergang zu einer äquivalenten Norm verloren gehen kann.

Weitere Beispiele

  • Hilberträume sind glatt, die Stützabbildung lautet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\mapsto f_x=\langle \cdot,x\rangle} .
  • Die Lp[0,1]-Räume und die Folgenräume sind für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1<p<\infty} glatt. Allgemeiner sind gleichmäßig glatte Räume glatt.
  • Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} ein kompakter Hausdorffraum mit mindestens zwei Punkten, so ist der Funktionenraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C(K)} der stetigen Funktionen auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} mit der Supremumsnorm nicht glatt.

Charakterisierungen

Folgende Aussage über einen normierten Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,\|\cdot\|)} sind äquivalent:

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,\|\cdot\|)} ist glatt.
  • Die Norm auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_X} ist Gâteaux-differenzierbar, das heißt für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in S_X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y\in X} existiert Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \lim _{t\searrow 0}{\frac {\|x+ty\|-1}{t}}} .[2]
  • Jede Stützabbildung des Raums ist norm-schwach*-stetig.
  • Es gibt eine norm-schwach*-stetige Stützabbildung.[3]
  • Für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in S_X} und jede Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\varphi_n)_{n\in \N}} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_{X^*}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi_n(x)\rightarrow 1} folgt, dass Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle (\varphi _{n})_{n\in \mathbb {N} }} schwach*-konvergiert.[4]
  • Jeder zwei-dimensionale Unterraum ist glatt.[5]
  • Die Orthogonalität ist rechts-additiv, das heißt aus Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x\perp y} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \perp z} folgt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \perp (y+z)} .[6]

Dualität

Über die Dualität besteht ein enger Zusammenhang zur strikten Konvexität.[7][8]

  • Ein normierter Raum ist glatt, falls sein Dualraum strikt konvex ist.
  • Ein normierter Raum ist strikt konvex, falls sein Dualraum glatt ist.

Die Umkehrungen gelten im Allgemeinen nicht.

Renormierbarkeit

Da die Glattheit beim Übergang zu einer äquivalenten Norm verloren gehen kann, stellt sich in natürlicher Weise die Frage, zu welchen normierten Räumen es äquivalente, glatte Normen gibt, die also durch Übergang zu einer äquivalenten Norm glatt werden. Solche Räume nennt man glatt renormierbar.

Reflexive Räume sind strikt konvex renormierbar und daher wegen obiger Dualitätseigenschaften auch glatt renormierbar, sogar glatt und gleichzeitig strikt konvex renormierbar. Das gilt allgemeiner für schwach kompakt erzeugte Räume.[9]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell^\infty} ist nicht glatt renormierbar.[10]

Einzelnachweise

  1. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 2, §1
  2. Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Korollar 5.4.18
  3. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 2, §1, Theorem 1, punktweise für Banachräume formuliert
  4. Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Theorem 5.4.19
  5. Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Satz 5.4.21
  6. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 2, §1, Theorem 4, für Banachräume formuliert
  7. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 2, §1, Theorem 2, für Banachräume formuliert
  8. Robert E. Megginson: An Introduction to Banach Space Theory. Springer-Verlag, 1998, ISBN 0-387-98431-3, Sätze 5.4.5, 5.4.6
  9. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 5, §2, Korollar 2 zu Theorem 2
  10. Joseph Diestel: Geometry of Banach Spaces – Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag (1975), ISBN 3-540-07402-3, Kapitel 4, §5, Satz 2