Grenzschichtangepasste Gitter

aus Wikipedia, der freien Enzyklopädie

Die numerische Lösung von Problemen mit Grenzschichten, z. B. mit der Methode der finiten Elemente, erfordert Verfeinerungen des Gitters in Grenzschichtnähe--grenzschichtangepaßte Gitter.

Angenommen, die Lösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u } einer Randwertaufgabe zweiter Ordnung auf dem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,1] } lasse sich zerlegen gemäß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u=S+E } . Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S } eine glatte Funktion mit beschränkten Ableitungen, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E } jedoch eine Grenzschichtfunktion mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |E^{(k)}| \le C \epsilon^{-k} e^{-x/\epsilon}, k=0,1,2 }

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C } ist eine Konstante, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0<\epsilon<<1 } aber ein sehr kleiner Parameter. Damit ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E } eine typische Grenzschichtfunktion, die sich extrem schnell in der Umgebung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=0 } ändert.

Wenn man nun für eine Fehlerabschätzung der Methode der finiten Elemente mit linearen Splines den Interpolationsfehler auf einem äquidistanten Gitter der Schrittweite abschätzen will, so schätzt man separat den Anteil von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S } (das ist harmlos) und von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E } ab. Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |E|_1 } sich wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon^{-1/2} } verhält, wichtet man die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H^1 } -Seminorm mit und erhält

Dies deutet darauf hin, dass die Methode für kleine Werte von und moderate versagt, und tatsächlich zeigen dies auch numerische Experimente. Im eindimensionalen Fall könnte man zwar noch mit extrem kleinen Schrittweiten arbeiten, im zwei- oder dreidimensionalen Fall ist dies wenig sinnvoll.

Gesucht werden deshalb sich bei verdichtende Gitter

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle 0=x_{0}<x_{1}<\cdots <x_{i}<\cdots <x_{N}=1}

mit der Eigenschaft, dass die Interpolationsfehler Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \epsilon ^{1/2}|E-E^{I}|_{1}} bzw. unabhängig von die Größenordnung Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle N^{-1}} bzw. Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle N^{-2}} besitzen.

Shishkin-Gitter

Der Einfachheit halber sei eine gerade Zahl. Shishkin schlug 1988 im Zusammenhang mit Differenzenverfahren vor, stückweise äquidistante Gitter in den Intervallen und zu nutzen, wobei der Übergangspunkt definiert ist durch . Diese Wahl sichert . Das impliziert: nahe ist das Gitter sehr fein mit einer Schrittweite proportional zu Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \varepsilon N^{-1}\ln N} , im Intervall ist die Schrittweite signifikant größer von der Größenordnung .

Man schätzt nun den Interpolationsfehler separat auf beiden Teilintervallen ab. Auf dem feinen Intervall gilt

Auf dem Intervall schätzt man nicht ab, sondern separat und . Dies ist einfach für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|E\|_{0,g} } , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|E^I\|_{0,g}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon^{1/2}|E|_{1,g} } . Zur Abschätzung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon^{1/2}|E^I|_{1,g} } nutzt man eine inverse Ungleichung, dies ist auf dem groben Gitter kein Problem. Letztlich erhält man

Wichtig: die Konstanten in beiden Abschätzungen sind von unabhängig.

Die gewonnenen Abschätzungen ermöglichen eine Fehlerabschätzung für die Finite-Elemente-Methode, die wegen des Faktors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ln N } nur fast optimal ist. Bei linearen Elementen stört der Faktor wenig. Bei stückweise Polynomen vom Grad ist der Einfluss des Faktors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\ln N)^k } für größere Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} beträchtlich.

Shishkin-Typ-Gitter

Optimale Ergebnisse erhält man, wenn man die Shishkinidee modifiziert und im feinen Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,x_{N/2}] } mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{N/2}=2\varepsilon \ln N } nicht äquidistant verfeinert, sondern raffinierter. Die Gitterpunkte dort werden mit einer gittererzeugenden Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi } , die stetig und monoton wachsend ist, definiert gemäß

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i= 2\varepsilon \phi(i/N),\quad i=0,1,\cdots,N/2. }

Ein Bakhvalov-Shishkin-Gitter erhält man speziell für

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi(t):=-\ln (1-2(1-N^{-1})t) .}

Dieses Gitter liefert die optimalen Abschätzungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon^{1/2}|u-u^I|_1 \le C N^{-1},\quad \|u-u^I\|_0 \le C N^{-2}. }

Bakhvalov-Typ-Gitter

Hier wählt man einen anderen Übergangspunkt vom feinen zum groben Gitter, nämlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{N/2}=2\varepsilon \ln 1/\varepsilon } und nutzt im Intervall die gittererzeugende Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi(t):=-\ln (1-2(1-\varepsilon)t) .}

Im Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [x_{N/2},1] } ist das Gitter wieder äquidistant. Damit besitzt die globale gittererzeugende Funktion im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{N/2}} eine nicht stetige Ableitung. Bei dem originalen Bakhvalov-Gitter (Bakhvalov 1969) dagegen ist die gittererzeugende Funktion stetig differenzierbar, dass macht aber deren Konstruktion unnötig kompliziert.

Für Bakhvalov-Typ-Gitter gelten ebenfalls die obigen optimalen Interpolationsfehlerabschätzungen für die Bakhvalov-Shishkin-Gitter. Dies ist ausreichend für die Analyse der Finite-Element-Methode für Reaktions-Diffusions-Gleichungen. Bei Konvektions-Diffusions-Gleichungen jedoch verursacht das Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [x_{N/2-1},x_{N/2}] } eines Bakhvalov-Typ-Gitters hinsichtlich optimaler Abschätzungen für die FEM Schwierigkeiten. Zhang and Liu umgingen diese 2020 mit der Hlfe einer modifizierten Interpolierenden für den Grenzschichtanteil.

Rekursiv erzeugte Gitter

Man wählt und dann rekursiv

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle   x_{i+1}=x_{i}+g(\varepsilon,H,x_i),\quad i=1,\cdots,M.  }

Am einfachsten ist die Wahl

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle  x_{i+1}=x_{i}+H x_i}

nach Duran und Lombardi 2006, wobei man i.a. bis zu einem Punkt der Größenordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O(\varepsilon) } mit der konstanten Schrittweite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon H } vorgeht und erst dann die Rekursion einsetzt. Für den Interpolationsfehler auf Duran-Lombardi-Gittern gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon^{1/2}|u-u^I|_1 \le C H,\quad \|u-u^I\|_0 \le C H^2. }

Allerdings ist die Zahl der verwendeten Gitterpunkte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ln (1/\varepsilon) } abhängig und damit auch die Interpolationsfehler, wenn man bezüglich der Anzahl der verwendeten Gitterpunkte misst.

Der zweidimensionale Fall

Im Gebiet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega=(0,1)^2 } mit genau einer Grenzschicht bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=0 } mit der oben beschriebenen Grenzschichtfunktion werde eine Finite-Elemente-Approximation einer Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u } gesucht.

Dann nutzt man in Richtung Gitterpunkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{x_i\} } eines grenzschichtangepaßten Gitters, in Richtung kann man ein äquidistantes Gitter mit Gitterpunkten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{y_j\} } verwenden. Die Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{x_i,y_j\} } bilden ein Rechteckgitter, und bilineare finite Elemente auf diesem Gitter approximieren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u } so wie im eindimensionalen Fall beschrieben in der Seminorm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon^{1/2}|\cdot|_1 } bzw. der Norm . Dies gilt auch für die linearen Elemente, die auf dem Dreiecksgitter definiert sind, welches aus dem Rechtecksgitter durch Einziehen von Diagonalen entsteht.

Da die Triangulierungen aber nicht quasiuniform sind, benötigt man für die Herleitung dieser Aussage sogenannte anisotrope Interpolationsfehlerabschätzungen, zu finden z. B. in einem Buch von Apel 1999.

Literatur

  • Apel, T.: Anisotropic finite elements. Wiley, Stuttgart 1999
  • Bakhvalov, A.S.: On the optimization of methods for solving boundary value problems with boundary layers. Zh. Vycisl. Mat. i Mat. Fis., 9(1969), 841-859
  • Duran, R.G., Lombardi, A.L.: Finite element approximation of convection-diffusion problems using graded meshes. Appl. Num. Math., 56(2006), 1314-1325
  • Linss, T.: Layer-adapted meshes for reaction-convection-diffusion problems. Springer, Berlin 2010
  • Shishkin, G.I.: Grid approximation of singularly perturbed parabolic equations with internal layers. Soviet J. Numer. Anal. Math. Modelling, 3(5), 1988, 393-407
  • Roos, H.-G.: Layer adapted meshes: Milestones in 50 years of history. arXiv: 1909.08273, 2019
  • Zhang, J., Liu, X.: Optimal order of convergence for finite element method on Bakhvalov-type meshes. J. Sci. Comput., 85(2020), Nr. 2