Hauptfaserbündel
In der Mathematik ist das Hauptfaserbündel, beziehungsweise Prinzipalfaserbündel oder Prinzipalbündel, ein Konzept der Differentialgeometrie, mit dem getwistete Produkte formalisiert werden und das unter anderem in der Physik zur Beschreibung von Eichfeldtheorien und speziell Yang-Mills-Feldern verwendet wird.
Produkte (triviale Prinzipalbündel)
Prinzipalbündel verallgemeinern den Begriff des kartesischen Produktes eines Raumes und einer topologischen Gruppe . So wie das kartesische Produkt besitzt auch ein Prinzipalbündel die folgenden Eigenschaften:
- Eine Gruppenoperation von auf in der gleichen Art, wie für den Produktraum
- Eine Projektionsabbildung von nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X,} die im Falle eines Produktraumes einfach die Projektion auf den ersten Faktor darstellt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x, g)\to x} .
Anders als Produkträume haben Prinzipalbündel keinen bevorzugten Schnitt, wie er im Produktfall durch das neutrale Element der Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} gegeben ist. Es gibt also zu Elementen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in X } kein bevorzugtes Element aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} als Identifikation von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x,e)} . Genauso wenig gibt es allgemein eine stetige Projektion auf welche die Projektion auf das zweite Element des Produktraumes verallgemeinert: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x, g)\to g} . Prinzipalbündel können deswegen komplizierte Topologien haben, die eine Darstellung des Bündels als Produktraum verhindern, selbst wenn einige zusätzliche Annahmen gemacht werden.
Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F\colon X\rightarrow G} lassen sich als Schnitte im trivialen Prinzipalbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi\colon X\times G\rightarrow X} interpretieren, nämlich als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s(x)=(x,F(x))} . Schnitte in Prinzipalbündeln verallgemeinern also den Begriff der G-wertigen Abbildungen.
Definition
Ein Prinzipalbündel ist ein Faserbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} über einem Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} mit der Projektion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi\colon P\to X} , versehen mit einer stetigen Rechtsoperation (im Folgenden notiert als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (p,g)\mapsto pg} ) einer topologischen Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} , sodass die Operation jede Faser auf sich selbst abbildet (das heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi(pg)=\pi(p)} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p\in P} und alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g\in G} ) und die Gruppe frei (jeder Punkt wird nur unter dem neutralen Element der Gruppe invariant) und transitiv (jeder Punkt einer Faser wird von jedem anderen mittels der Gruppenoperation erreicht) auf jeder Faser operiert. Die Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} heißt Strukturgruppe des Prinzipalbündels.
Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} und glatte Mannigfaltigkeiten, die Strukturgruppe eine Lie-Gruppe und die Operation selbst glatt, so heißt das Prinzipalbündel glattes Prinzipalbündel.
Trivialisierung
Wie bei jedem Faserbündel ist die Projektion topologisch gesehen lokal trivialisierbar: Es gibt also zu jedem eine offene Umgebung , sodass homöomorph ist zu . Jede Faser ist homöomorph zur als topologischer Raum aufgefassten Strukturgruppe . Eine Trivialisierung eines Prinzipalbündels ist sogar unter Berücksichtigung der Gruppenoperation möglich: Es lässt sich ein äquivarianter Homöomorphismus wählen, sodass
für alle . Jede solche lokale Trivialisierung induziert einen lokalen Schnitt vermöge , wobei das neutrale Element bezeichne.
Umgekehrt induziert auch jeder lokale Schnitt eine lokale Trivialisierung gegeben durch mit . Die lokale Trivialisierbarkeit folgt also aus der Existenz lokaler Schnitte, welche allgemein auf Faserbündeln existieren. Anders als bei allgemeinen Faserbündeln (man betrachte etwa das Tangentialbündel einer glatten Mannigfaltigkeit) impliziert nicht nur die globale Trivialisierbarkeit die Existenz eines globalen Schnittes, sondern auch die Existenz eines globalen Schnittes die Trivialisierbarkeit.
Im physikalischen Kontext lässt sich die Wahl einer Eichung als (je nach Situation lokale oder globale) Wahl einer Trivialisierung bzw. eines Schnittes verstehen.[1]
Beispiele
Rahmenbündel
Sei eine differenzierbare n-dimensionale Mannigfaltigkeit. Das Rahmenbündel ist die Menge aller Basen von Tangentialräumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_xM, x\in M} , mit der kanonischen Projektion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi\colon F(M)\rightarrow M} . Die Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G:=\operatorname{GL}(n,\mathbb R)} wirkt transitiv und treu auf den Fasern.
Überlagerungen
Galois-Überlagerungen sind Prinzipalbündel mit der diskreten Gruppe der Decktransformationen als Strukturgruppe.
Homogene Räume
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} eine Lie-Gruppe und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H\subset G} eine abgeschlossene Untergruppe, dann ist ein Prinzipalbündel mit Strukturgruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} .
In der Topologie und Differentialgeometrie gibt es einige Anwendungsfälle der Prinzipalbündel. Desgleichen gibt es Anwendungen der Prinzipalbündel in der Physik. Dort bilden sie einen entscheidenden Teil des mathematischen Rahmens der Eichtheorien.
Assoziierte Vektorbündel
Im Falle von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G=\operatorname{GL}(n,\mathbb C)} kann man zu jedem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} -Prinzipalbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi\colon P\rightarrow B} ein assoziiertes komplexes Vektorbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi\colon E\rightarrow B} definieren durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E=(P\times \mathbb C^n)/\sim}
mit der Äquivalenzrelation
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (p,v)\sim (pg,g^{-1}v)\quad\forall g\in \operatorname{GL}(n,\mathbb C)} .
Analog kann man zu jedem -Prinzipalbündel ein assoziiertes reelles Vektorbündel definieren.
Zum Beispiel sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} eine differenzierbare n-dimensionale Mannigfaltigkeit und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(M)} das Rahmenbündel. Dann ist das Tangentialbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle TM} das assoziierte Vektorbündel für die kanonische Wirkung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{GL}(n,\R)} auf .
Allgemeiner lässt sich auch ein assoziiertes Vektorbündel für beliebige Hauptfaserbündel definieren. Sei hierzu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P\rightarrow M} ein -Prinzipalbündel und eine reelle oder komplexe Darstellung. Dann ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E=(P\times_{\rho }V):=(P\times V)/G}
mit der Äquivalenzrelation
- .
ein Vektorbündel, genannt das Vektorbündel assoziiert mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi\colon P\rightarrow B} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho} . Im Falle von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G=\operatorname{GL}(n,\mathbb C)} stimmt das so konstruierte Vektorbündel mit dem obigen überein, wenn man für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho} die fundamentale Darstellung wählt.
Reduktion der Strukturgruppe
Ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} -Prinzipalbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P\rightarrow M} lässt sich auf eine Untergruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H\subset G} reduzieren, wenn das Bündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P/H\rightarrow M} einen Schnitt besitzt. Insbesondere ist ein Prinzipalbündel genau dann trivial, wenn es sich auf die Untergruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{1\right\}\subset G} reduzieren lässt.
Beispiele
Betrachte das Rahmenbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(M)\rightarrow M} einer n-dimensionalen differenzierbaren Mannigfaltigkeit, die Strukturgruppe ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G=\operatorname{GL}(n,\R)} . Dann gilt:
- die Strukturgruppe lässt sich genau dann auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{GL}(k,\R)\subset \operatorname{GL}(n,\R)} reduzieren, wenn das Tangentialbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n-k} linear unabhängige Schnitte hat,
- die Strukturgruppe lässt sich immer auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O(n)} reduzieren, dies entspricht der Wahl einer Riemannschen Metrik,
- die Strukturgruppe lässt sich genau dann auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{SO}(n)} reduzieren, wenn die Mannigfaltigkeit orientierbar ist.
Sei im Folgenden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=2m} eine gerade Zahl:
- die Strukturgruppe lässt sich genau dann auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{GL}(m,\Complex)\subset \operatorname{GL}(2m,\R)} reduzieren, wenn die Mannigfaltigkeit fastkomplex ist,
- wenn die Mannigfaltigkeit symplektisch ist, dann lässt sich die Strukturgruppe auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(m)} reduzieren.
Sei im Folgenden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=2m+1} eine ungerade Zahl:
- wenn die Mannigfaltigkeit eine Kontaktstruktur besitzt, dann lässt sich die Strukturgruppe auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(m)\times\left\{1\right\}} reduzieren.
Zusammenhang, Krümmung
Eine wichtige Rolle beim Studium von Prinzipalbündeln spielen Zusammenhangs-1-Formen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega\in\Omega^1(P,\mathfrak{g})} und deren Krümmungs-2-Formen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega=d\omega +\tfrac12 [\omega\wedge\omega]\in \Omega^2(M,\mathfrak{g})} .
Anwendung: Elektromagnetismus
In einem ladungsfreien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^3} erfüllen das elektrische Feld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} und das Magnetfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} die Maxwell-Gleichungen. Die Felder besitzen Potentiale Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} mit und . Diese Potentiale sind jedoch nicht eindeutig, denn und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A^\prime=A+\operatorname{grad} f} für eine beliebige Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} geben dieselben Felder.
Man betrachtet die Minkowski-Raum-Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M=\R^4} und das Prinzipalbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M\times S^1} mit der Zusammenhangsform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega=\mathrm d\theta+\phi\,\mathrm dt+A_1\,\mathrm dx_1+A_2\,\mathrm dx_2+A_3\,\mathrm dx_3} . Deren Krümmungsform gibt das elektromagnetische Feld:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Omega=\mathrm d\omega=-\Sigma E_i\,\mathrm dt\wedge \mathrm dx_i+\Sigma B_i\,\mathrm dx_j\wedge\mathrm dx_k.}
Die Eich-Transformationen sind von der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega^\prime=\omega+\mathrm df} .
Die Maxwell-Gleichungen lassen sich formulieren als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm d*\Omega=0} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle *} der Hodge-Operator ist.
Literatur
- David Bleecker: Gauge Theory and Variational Principles, Dover edition. Auflage, Addison-Wesley Publishing, 1981, ISBN 0-486-44546-1..
- Jürgen Jost: Riemannian Geometry and Geometric Analysis, (4th ed.). Auflage, Springer, New York 2005, ISBN 3-540-25907-4..
- R. W. Sharpe: Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. Springer, New York 1997, ISBN 0-387-94732-9..
- Norman Steenrod: The Topology of Fibre Bundles. Princeton University Press, Princeton 1951, ISBN 0-691-00548-6..
- Martin Schottenloher: Geometrie und Symmetrie in der Physik. vieweg, Braunschweig 1995, ISBN 3-528-06565-6..
Weblinks
- Helga Baum: Vorlesung über Eichfeldtheorie (PDF; 584 kB)
Einzelnachweise
- ↑ Pierre Deligne, Pavel Etingof, Daniel Freed, Lisa Jeffrey, David Kazhdan, John Morgan, David Morrison, Edward Witten (Hrsg.): Quantum Fields and Strings: A Course for Mathematicians. American Mathematical Society, 1999, ISBN 0-8218-1987-9, S. 18.