Heterosis-Effekt
Der Heterosis-Effekt bezeichnet in der Genetik, der Pflanzenzucht und der Tierzucht die besonders ausgeprägte Leistungsfähigkeit von Hybriden (Mischlingen), beispielsweise von Nachkommen zweier verschiedener Pflanzensorten oder Tierrassen. Von einem Heterosis-Effekt wird gesprochen, wenn die beobachtete Leistung der ersten Filialgeneration (F1) höher ist als die durchschnittliche Leistung bei den Ausgangssorten oder -zuchtrassen (Parentalgeneration, Elterngeneration).
Genetik
Die Eltern der Hybriden sind für untersuchte Merkmale reinerbig (homozygot), aber die beiden Eltern unterscheiden sich voneinander. Die Nachkommen der F1-Generation, die heterotischen Hybriden sind mischerbig (heterozygot) und untereinander gleich (homogen), entsprechend der ersten Mendelschen Regel (Uniformitätsregel). Dies beruht darauf, dass im doppelten Chromosomensatz je ein Allel von der Mutter und eines vom Vater stammt. Wenn die beiden Eltern in vielen Merkmalen reinerbig sind, sich aber stark vom anderen Elternteil unterscheiden, ergibt sich eine immer wieder nachzüchtbare hybride F1-Generation, deren Eigenschaften sich von beiden Eltern unterscheiden
Nutzen
Durch genetisch möglichst unterschiedliche reinrassige Zuchtlinien der Parentalgeneration (= Elterngeneration) wird bei der Kreuzung erreicht, dass viele Allele der Kreuzungseltern unterschiedlich sind. Stark heterozygote Lebewesen verfügen über mehr verschiedene Erbanlagen als reinrassige. Sie sind oft widerstandsfähiger gegen Krankheiten und können sich besser auf wechselnde Umweltbedingungen einrichten. Nachteilige, rezessiv bedingte Eigenschaften werden zudem im Phänotyp der Hybride nicht (oder kaum) realisiert.
Hybridzucht wird vor allem zur Steigerung von Fertilitätsmerkmalen angewendet, die normalerweise eine niedrige Heritabilität haben, das heißt nur schlecht vererblich sind (Fruchtbarkeit bei Schweinen, Samenertrag bei Kulturpflanzen).
Genutzt wird die Hybridzucht z. B. bei Bienen, Schweinen, Hybridhühnern und im Pflanzenbau (Getreide, Mais).
Nach der zweiten Mendelschen Regel nimmt die Mischerbigkeit aber ab der zweiten Filialgeneration (F2) ab: jede Selbstbefruchtung von Hybriden senkt den Grad der Heterozygotie (und damit üblicherweise die Ausprägung der Heterosis der Merkmale) auf die Hälfte. Mildere Inzucht, etwa fortgesetzte Geschwister-Paarung bei Tieren, senkt den Grad der Heterozygotie weniger stark, aber nach vielen Generationen ebenfalls bis auf Null. Wenn sich die Nachkommen von Hybriden, wie bei Tieren üblich, durch Fremdbefruchtung fortpflanzen, dann erreichen sie einen eher normalen Zustand auf dieser Inzucht-Hybrid-Skala und sind dann weder inzüchtig noch hybrid. Wenn aber die Nachkommen von Hybriden, wie bei vielen Pflanzen (z. B. Gerste) üblich, sich durch Selbstbefruchtung fortpflanzen, dann verlieren sie mit den Generationen die Mischerbigkeit, sie werden reinerbig. Sie verlieren alles, was in der Ausgangshybride an Hybridwüchsigkeit vorhanden war. Der Heterosis-Effekt ist allerdings bei solchen Pflanzen von vornherein eher klein, sie verlieren über diese Generationenfolge also wenig.
Hinweis: Sind die zwei Eltern selbst Hybriden, dann realisieren sie selbst Heterosis und müssen aus heterotischen Gründen nicht weniger produktiv als ihr Kreuzungs-Nachkomme sein.
In der Maiszüchtung finden auch Dreiwegehybriden (Inzuchtlinie 1 x Inzuchtlinie 2) x Inzuchtlinie 3 Anwendung.
So kann der Heterosis-Effekt bei Getreide-Arten wie dem Mais oder Roggen zur Verdopplung (und mehr) der Erträge im Vergleich zu solchen Eltern (Inzuchtlinien) führen. Hierbei sind allerdings die vorhergehenden Inzuchtdepressionen bei höheren Inzuchtgenerationen (…, I6) der Eltern zu berücksichtigen. Aus der Perspektive von wüchsigen Hybriden erkennt man im Minderwuchs von Inzuchtlinien deren Inzucht-Depression; aus der Sicht dieser Inzuchtlinien entsprechend die Heterosis (Hybridwüchsigkeit, Bastardwüchsigkeit) der Hybriden (Bastarde). Der Anteil der Hybridsorten ist in den letzten Jahrzehnten stark angestiegen. Außer der hohen Leistung kommt vor allem der Planbarkeit des Züchtungsergebnisses mit Hilfe der Genomik und dem Schutz vor Nachbau durch die Landwirte große Bedeutung zu. 1995 waren bei Brokkoli, Tomaten und Rosenkohl jeweils über 80 Prozent der Sorten Hybridsorten.
Heterosis beim Menschen
Intelligenzforscher wie Michael Mingroni ziehen Heterosis als Ursache für die stetige Zunahme der menschlichen Intelligenz, den sog. Flynn-Effekt, in Betracht.[1]
Der Heterosis-Effekt könnte beim Menschen auch zu höherer Attraktivität führen. So waren in mehreren Studien Menschen mit gemischter Abstammung unter den bestaussehenden Gesichtern deutlich überrepräsentiert.[2]
Historie
Der deutsche Botaniker Joseph Gottlieb Kölreuter lieferte bereits 1766 eine erste Beschreibung dieses Phänomens. Bei seinen Untersuchungen von Tabak und Stechapfel beobachtete er, dass die Kreuzungsnachkommen eine gesteigerte Wüchsigkeit gegenüber den Elternpflanzen aufwiesen und dass es einen Zusammenhang zwischen Stärke dieses Phänomens und Verschiedenheit der Eltern gab.[3]
Gregor Mendel beobachtete dies 1865 bei Erbsen und auch Charles Darwin berichtete 1876, dass Inzucht bei Pflanzen zu einer Verschlechterung, deren Kreuzung aber zu gesteigerter Vitalität führt.
Den Begriff Heterosis schlug 1914 der Pflanzengenetiker George Harrison Shull bei Vorlesungen in Göttingen vor, er leitete ihn dabei von heteros und osis ab.
Die Deutsche Forschungsgemeinschaft DFG richtete 2002 das Schwerpunktprogramm Heterosis ein, um mit pflanzlicher Genomforschung zur Kausalanalyse dieses biologischen Schlüsselphänomens beizutragen und Grundlagen für dessen optimale Nutzung in der Pflanzenzüchtung zu erarbeiten.[4]
Im Rahmen des Themas Grüne Gentechnik[5] kündigte am 13. Mai 2009 der DFG-Präsident auf einer Pressekonferenz von DFG und DLG an, dass nun u. a. mithilfe gentechnischer Methoden die molekularen Ursachen der Heterosis aufgeklärt werden sollen.[6]
Die Universität Hohenheim richtete im September 2009 eine dreitägige internationale Konferenz Heterosis in Plants: Genetic and molecular causes and optimal exploitation in breeding aus.[7]
Am 1. September 2014 startete das fünfjährige Projekt ZUCHTWERT: Zuchtmethodische Grundlagen zur Nutzbarmachung von Heterosis in Weizensorten.[8] Es wurde vom Bundesministerium für Ernährung und Landwirtschaft mit insgesamt ca. 5 Millionen Euro gefördert, die sich auf mehrere Projektpartner verteilten. 655.370 Euro erhält das Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben. Die Landessaatzuchtanstalt der Universität Hohenheim erhält hierfür 370.775 Euro und macht ZUCHTWERT damit zu einem Schwergewicht der Forschung an der Universität Hohenheim.[9] Die restlichen ca. 3,9 Millionen Euro verteilten sich[10] auf sechzehn Konzerne, Firmen und Organisationen[11], die sich in Deutschland mit der Weizenzucht beschäftigen.
Weblinks
- Was steckt hinter dem Heterosiseffekt? auf pflanzenforschung.de
- Hybridzüchtung vom Max-Planck-Institut für Molekulare Pflanzenphysiologie
- Heterosis auf botanik online (1996–2004)
- Heterosis in The Plant Cell, Monatsschrift der American Society of Plant Biologists (ASPB).
- Heterosis: emerging ideas about hybrid vigour auf Journal of Experimental Botany, Volume 63, Issue 18, November 2012, Oxford Academic
- Heterosis or Hybrid Vigour auf BiologyDiscussion.com
- Heterosis auf Spektrum.de
Literatur
- Werner Odenbach: Biologische Grundlagen der Pflanzenzüchtung. Parey, Stuttgart, 1997, ISBN 3-8263-3096-X
- Mireille Starke: Untersuchungen zur Heterosis der Belastbarkeit mittels DNA-Markeranalysen, Tenea Verlag, 2003, ISBN 3-86504-002-0
- Hermann Kuckuck, Gerd Kobabe, Gerhard Wenzel: Grundzüge der Pflanzenzüchtung, Seite 51, De Gruyter, 1985, ISBN 3-11-008682-4
- CIMMYT, 1997, Book of Abstracts, The Genetics and Exploitation of Heterosis in Crops, An International Symposium, Mexico, ISBN 968-6923-90-X
- Sant S. Virmani: Heterosis and Hybrid Rice Breeding, Springer Verlag, 1994, ISBN 3-540-58206-1
- Amarjit S. Basra: Heterosis and Hybrid Seed Production in Agronomic Crops, The Haworth Press, 1999, ISBN 1-56022-876-8
- Rafael Frankel: Heterosis: Reappraisal of Theory and Practice, Springer, 1983, ISBN 978-3-642-81979-7
- Arnel R. Hallauer, Marcelo J. Carena, J. B. Miranda Filho: Quantitative Genetics in Maize Breeding, Springer, 1988, Kapitel 10, ISBN 978-1-4419-0765-3
Einzelnachweise
- ↑ Michael A. Mingroni (2007): Resolving the IQ Paradox: Heterosis as a Cause of the Flynn Effect and Other Trends. (PDF; 339 kB) Psychological Review 114 (3), S. 806–829.
- ↑ Ryan Anderson: Mixed Ethnicity Relationships: The Way of the Future? Psychology Today, 5. Januar 2015, abgerufen am 2. Dezember 2017 (englisch).
- ↑ Joseph Gottlieb Kölreuter: Vorläufige Nachricht von einigen das Geschlecht der Pflanzen betreffenden Versuchen und Beobachtungen, Band 3, 1766, Herausgeber W. Pfeffer
- ↑ DFG-Pressemitteilung Nr. 19: DFG richtet 16 neue Schwerpunktprogramme ein 17. Mai 2002, abgerufen am 11. September 2017.
- ↑ DFG-Broschüre: Grüne Gentechnik WILEY-VCH Verlag, ISBN 978-3-527-32857-4, abgerufen am 11. September 2017
- ↑ Prof. Dr.-Ing. Matthias Kleiner: Vorstellung des Memorandums „Forschung in Freiheit und Verantwortung“ zur Grünen Gentechnik. (PDF; 42 kB), S. 5., abgerufen am 11. September 2017
- ↑ Webseite der Universität Hohenheim: Konferenz Heterosis in Plants vom 7. - 9. September 2009, abgerufen am 11. September 2017
- ↑ Projekt-Steckbrief der Gemeinschaft zur Förderung von Pflanzeninnovation e.V., GFPi: Steckbrief ZUCHTWERT (Memento des Originals vom 12. September 2017 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. , (PDF; 72 kB), abgerufen am 11. September 2017
- ↑ Pressemitteilungen Bioökonomie-Projekte der Universität Hohenheim: Super-Weizen gesucht, Forscher starten Deutschlands größtes Weizenzucht-Projekt 29. April 2015, (PDF; 62 kB), abgerufen am 11. September 2017
- ↑ Fördermittel der ZUCHTWERT-Teilprojekte: Forschungsinformationssystem Agrar und Ernährung FISA, abgerufen am 11. September 2017
- ↑ Projektseite ZUCHTWERT