Identitätssatz für holomorphe Funktionen

aus Wikipedia, der freien Enzyklopädie

Der Identitätssatz für holomorphe Funktionen ist ein wichtiger Satz der Funktionentheorie. Er besagt, dass aufgrund der starken Einschränkungen an holomorphe Funktionen oft schon die lokale Gleichheit zweier solcher Funktionen ausreicht, um diese auch global zu folgern.

Identitätssatz

Seien und holomorphe Funktionen auf einer Umgebung von und sei ein Häufungspunkt der Koinzidenzmenge , dann existiert eine Umgebung von mit auf ganz .

Identitätssatz für Gebiete

Für Gebiete, insbesondere da sie zusammenhängend sind, lässt sich die Aussage des Identitätssatzes leicht verschärfen und wird auch fundamentaler Satz der Funktionentheorie genannt.[1]

Aussage

Seien ein Gebiet und und auf diesem Gebiet holomorphe Funktionen. Dann sind folgende Aussagen äquivalent:

  1. für alle , das heißt die Funktionen stimmen auf dem ganzen Gebiet überein.
  2. Die Koinzidenzmenge hat einen Häufungspunkt in .
  3. Es gibt ein , so dass für alle , das heißt in einem Punkt von stimmen die Funktionen und alle ihre Ableitungen überein.

Beweis

Holomorphe Funktionen sind analytisch, d. h. lokal jeweils durch ihre Taylorreihe darstellbar.

  • 2. folgt sofort aus 1., da jeder Punkt in ein Häufungspunkt von ist.
  • 3. folgt aus 2. durch Widerspruchsbeweis. Sei ein Häufungspunkt der Koinzidenzmenge. Ohne Einschränkung können wir voraussetzen. Annahme: Es gibt ein mit . Sei das kleinste solche. Dann ist in einer Umgebung der Null mit und die Nullstellenmenge von ist gleich der Koinzidenzmenge, da stetig ist. Insbesondere gilt im Widerspruch zur Minimalität von .
  • 1. folgt aus 3., weil zusammenhängend ist. Es genügt zu zeigen, dass die Menge nichtleer, offen und abgeschlossen in ist. Ersteres gilt nach Voraussetzung, letzteres ist klar, da ist, wobei die als stetige Urbilder der abgeschlossenen Menge wieder abgeschlossen sind und der Durchschnitt abgeschlossener Mengen wieder abgeschlossen ist. Schließlich ist offen: Ist Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle z\in A} , dann ist als analytische Funktion in einer Umgebung von gleich ihrer Taylorreihe, also identisch null. Diese Umgebung gehört also auch zu .

Beispiel

Beim zweiten Punkt ist es essentiell, dass der Häufungspunkt im Gebiet und nicht auf dessen Rand liegt. Betrachte dazu folgendes Beispiel:

Die Funktion Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \sin({\tfrac {1}{z}})} ist holomorph auf , die Folge liegt darin und konvergiert gegen 0. Also ist 0 ein Häufungspunkt der Folge Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle (z_{n})} und es gilt , aber natürlich gilt auch Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \sin({\tfrac {1}{z}})\not \equiv 0} . Also stimmt auf der Menge der (die den Häufungspunkt 0 besitzt) mit der Nullfunktion überein, aber offensichtlich nicht auf ganz .

Folgerungen

Eindeutige Fortsetzbarkeit reeller Funktionen
Eine wesentliche Folgerung aus dem Identitätssatz ist die eindeutige Fortsetzbarkeit reeller Funktionen:
Kann man eine reelle Funktion holomorph auf die komplexe Ebene fortsetzen (dies ist im Allgemeinen nicht möglich), so ist diese Fortsetzung eindeutig.
Der komplexe Sinus ist daher wirklich die einzige holomorphe Fortsetzung des reellen Sinus. Insbesondere gelten auch die Additionstheoreme für den komplexen Sinus.
Sonderfall g=0
Ein Sonderfall des Identitätssatzes für Gebiete, der sehr häufig angewendet wird, ergibt sich mit :
Hat die Nullstellenmenge von in einem Gebiet einen Häufungspunkt, so gilt auf ganz .
Nullteilerfreiheit des Rings der holomorphen Funktionen
Der Ring der holomorphen Funktionen auf einem Gebiet ist nullteilerfrei, d. h. aus folgt stets oder . Seien hierzu holomorph mit und . Dann gibt es einen Punkt in und eine Umgebung von mit Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f(z)\neq 0} für alle . Dann gilt aber Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle g|_{U}\equiv 0} , und somit nach dem Sonderfall.
Identitätssatz für Potenzreihen
Es seien
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \sum _{\nu =0}^{\infty }a_{\nu }(x-x_{0})^{\nu }}   und  
zwei Potenzreihen um den gleichen Entwicklungspunkt mit reellen oder komplexen Koeffizienten bzw. und einem gemeinsamen nichttrivialen Konvergenzbereich . Stimmen die Werte für alle einer Folge () mit und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x_{n}\rightarrow x_{0}} überein, so sind die Reihen identisch, d. h.
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle a_{\nu }=b_{\nu }\qquad (\nu \in \mathbb {N} _{0})}
Der Beweis ergibt sich induktiv über gliedweise Differentiation einer Potenzreihe aus dem Identitätssatz für holomorphe Funktionen.[1]
Identitätssatz für Polynome
Der Identitätssatz für Polynome ist ein Spezialfall des Identitätssatzes für Potenzreihen und ist Grundlage für den Koeffizientenvergleich.[1][2]

Mehrere Veränderliche

In der Funktionentheorie mehrerer Veränderlicher treten Nullstellenmengen mit Häufungspunkten auf. Die holomorphe Funktion Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathbb {C} ^{2}\rightarrow \mathbb {C} ,(z_{1},z_{2})\mapsto z_{1}-z_{2}} verschwindet auf der Geraden ohne selbst die Nullfunktion zu sein. In der Funktionentheorie mehrerer Veränderlicher gilt ein Identitätssatz in folgender Form:[3]

  • Ist Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle G\subset \mathbb {C} ^{n}} ein Gebiet und sind zwei holomorphe Funktionen, die auf einer nicht-leeren offenen Teilmenge von übereinstimmen, so ist auf ganz .

Literatur

  • E. Freitag, R. Busam: Funktionentheorie 1. 4. Auflage. Springer-Verlag, ISBN 3-540-67641-4.

Einzelnachweise

  1. a b c Guido Walz (Hrsg.): Lexikon der Mathematik. Band 2 (Eig-Inn). Springer Spektrum Verlag, Mannheim 2017, ISBN 978-3-662-53503-5, S. 476, doi:10.1007/978-3-662-53504-2.
  2. Guido Walz (Hrsg.): Lexikon der Mathematik. Band 3 (Inp-Mon). Springer Spektrum Verlag, Mannheim 2017, ISBN 978-3-662-53501-1, S. 131, doi:10.1007/978-3-662-53502-8.
  3. Gunning-Rossi: Analytic functions of several complex variables. Prentice-Hall 1965, Kap. I.A, Theorem 6 (Identity Theorem)