Integralkurve

aus Wikipedia, der freien Enzyklopädie

Eine Integralkurve bezeichnet in der Mathematik im Bereich der Differentialtopologie eine auf einer differenzierbaren Mannigfaltigkeit definierte Kurve, die in enger Beziehung zu einem gegebenen glatten Vektorfeld auf dieser Mannigfaltigkeit steht. So stellen beispielsweise elektrische Feldlinien Integralkurven des zugehörigen elektrischen Vektorfeldes dar. Anschaulich bewegt sich ein kleiner Styroporball im Idealfall auf Integralkurven des Vektorfeldes, das etwa von der Strömung eines Flusses vorgegeben wird.

Definition

Integralkurven eines Vektorfeldes auf der zweidimensionalen Einheitssphäre

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein glattes Vektorfeld auf einer Mannigfaltigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} der Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \in M} ein beliebiger Punkt. Dann heißt eine glatte Kurve Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma \colon I \to M} auf einem offenen Intervall mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_0 \in I} Integralkurve von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} , wenn

Oder mit anderen Worten: Der Tangentialvektor von ist an jeder Stelle identisch mit dem durch gegebenen Vektor an dieser Stelle.

Existenz

In lokalen Koordinaten reduziert sich das Problem auf ein System gewöhnlicher Differentialgleichungen:

wobei und die glatte Funktionen auf sind. Zusammen mit der Randbedingung handelt es sich also um ein klassisches Anfangswertproblem und der Satz von Picard-Lindelöf garantiert somit eine eindeutige Lösung in einer Umgebung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_0} . Da man Lösungen von Differentialgleichungen auch oft 'Integrale' nennt, liegt hier der Begriff 'Integralkurve' nahe.

Lokaler Fluss

Zu jedem glatten Vektorfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X \colon M\to TM} gibt es einen eindeutig bestimmten maximalen lokalen Fluss

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi \colon A\to M,\quad (t,p) \mapsto \gamma_p(t)}

mit dem Definitionsbereich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=\bigcup\nolimits_{p\in M}I_p\times\{p\}\subseteq\R\times M} .

Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma_p \colon I_p\to M} die eindeutig bestimmte maximale Integralkurve mit und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma_p'(t)=X(\gamma_p(t))} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t\in I_p} .[1] Ist die Mannigfaltigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} kompakt, dann ist der Fluss global, das heißt, es gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_p=\R} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p\in M} und .

Literatur

  • Theodor Bröcker, Klaus Jänich: Einführung in die Differentialtopologie. Springer, Berlin 1973, ISBN 3-540-06461-3, § 8. Dynamische Systeme.
  • John M. Lee: Introduction to Smooth Manifolds (= Graduate Texts in Mathematics. Nr. 218). Springer Verlag, New York NY u. a. 2002, ISBN 0-387-95448-1.

Einzelnachweise

  1. R. Abraham, Jerrold E. Marsden, T. Ratiu: Manifolds, tensor analysis, and applications (= Applied mathematical sciences 75). 2. Auflage. Springer, New York NY u. a. 1988, ISBN 0-387-96790-7, S. 249.