Kollektives Modell
Ein Kollektives Modell ist ein Paar zweier Zufallsvariablen mit großer Anwendung in der Versicherungsmathematik.
Definition
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} eine Zufallsvariable mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(N \in \mathbb{N}_0) =1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_n)_{n \in \mathbb{N}}} eine Folge von reellen Zufallsvariablen, dann heißt das Paar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle N,(X_n)_{n \in \mathbb{N}_0} \rangle } Kollektives Modell.
Interpretation
Eine mögliche Interpretation hat große Bedeutung in der Schadensversicherungsmathematik, wenn man einen homogenen Bestand an Risiken betrachtet. Hierbei interpretiert man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} als die Anzahl aller Schäden, die in einem Zeitabschnitt eingetreten sind und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_i} als die Schadenhöhe die der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -te Schaden verursacht hat.
Allerdings ist bei der Verwendung in der Praxis Vorsicht geboten, da alle Zufallsvariablen als unabhängig voneinander verteilt angenommen werden, was in der Praxis nicht immer der Fall sein muss.
Das kollektive Modell ist eine Verallgemeinerung des individuellen Modells.
Weiterhin ist es in der Versicherungsmathematik sinnvoll einen Gesamtschaden Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle S:\Omega \rightarrow \mathbb {R} } zu definieren:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S := \sum_{n=0}^{\infty} \chi_{\{\omega \in \Omega | N(\omega) = n\}}\sum_{i=1}^n X_i}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} selbst ist dann wieder eine Zufallsvariable, die durch das zu Grunde liegende Kollektive Modell beschrieben wird. Man Interessiert sich dann häufig für bestimmte Eigenschaften von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} wie beispielsweise den Erwartungswert oder die Varianz.
Der Gesamtschaden kann mit dem Panjer-Algorithmus rekursiv berechnet werden.
Literatur
- Schmidt, Klaus D.: Versicherungsmathematik, Springer Dordrecht Heidelberg London New York 2009, ISBN 978-3-642-01175-7