Von-Neumann-Algebra
Eine Von-Neumann-Algebra oder W*-Algebra ist eine mathematische Struktur in der Funktionalanalysis. Historisch beginnt die Theorie der Von-Neumann-Algebren mit den grundlegenden von 1936 bis 1943 erschienenen Arbeiten von Francis J. Murray und John von Neumann On rings of operators.[1][2][3] Der Name Von-Neumann-Algebra für derartige Algebren geht auf einen Vorschlag von Jean Dieudonné zurück.[4]
Definition
Eine Von-Neumann-Algebra (benannt nach John von Neumann) oder (mittlerweile veraltet) ein Ring von Operatoren ist eine *-Unteralgebra mit Eins der Algebra der beschränkten linearen Operatoren eines Hilbertraums , die eine (und damit alle) der drei folgenden äquivalenten Bedingungen erfüllt:
- .
- ist abgeschlossen in der starken Operatortopologie.
- ist abgeschlossen in der schwachen Operatortopologie.
Hierbei ist die Kommutante von und entsprechend die Kommutante von .
Die Äquivalenz der drei obigen Aussagen nennt man den von Neumannschen Doppelkommutantensatz oder Bikommutantensatz. Diese Aussage kann wie folgt verschärft werden:
- Ist eine *-Unteralgebra mit Eins, so ist der Abschluss von sowohl in der schwachen als auch in der starken Operatortopologie.
Auch diese Formulierung, die eine Äquivalenz zwischen der rein algebraischen Kommutanten-Bildung und der rein topologischen Dichte-Beziehung bzw. Abschluss-Bildung herstellt, wird als Bikommutantensatz bezeichnet. Damit erweist sich der Bikommutantensatz als ein Dichtheitssatz. Zusammen mit dem weiteren Dichtheitssatz von Kaplansky stellt er den Ausgangspunkt der Theorie der Von-Neumann-Algebren dar.
Eine Von-Neumann-Algebra kann nach einem Satz von Shōichirō Sakai auch abstrakt ohne einen zugrundeliegenden Hilbertraum definiert werden:
- Eine Von-Neumann-Algebra ist eine C*-Algebra, die der topologische Dualraum eines Banachraums ist.
Faktoren
Die Von-Neumann-Algebra heißt Faktor, falls sie eine der beiden folgenden äquivalenten Bedingungen erfüllt:
- .
- erzeugt .
Da die Menge der Operatoren aus ist, die mit allen Operatoren aus kommutieren, ist das Zentrum von . Faktoren sind daher die Von-Neumann-Algebren mit kleinst möglichem Zentrum. Man kann Von-Neumann-Algebren als direktes Integral (eine Verallgemeinerung der direkten Summe) von Faktoren darstellen, das heißt, Von-Neumann-Algebren sind in diesem Sinne aus Faktoren zusammengesetzt.
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex\cdot 1_H} sind Beispiele für Faktoren. Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} ist auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A'} ein Faktor; offenbar gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L\left(H\right)'=\Complex\cdot 1_H} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Complex\cdot 1_H)' = L\left(H\right)} .
Bei den Faktoren können 3 Typen, die Typ I, Typ II und Typ III heißen, unterschieden werden.
Kommutative Von-Neumann-Algebren
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,{\mathfrak X},\mu)} ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} -endlicher Maßraum. Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H=} L2Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,{\mathfrak X},\mu)} ein Hilbertraum, und jede wesentlich beschränkte Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\in L^{\infty}(X,{\mathfrak X},\mu)} definiert via Multiplikation einen Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_f\in L(H), M_f(g):=f\cdot g} . Die Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\to M_f} ist ein *-Isomorphismus von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\in L^{\infty}(X,{\mathfrak X},\mu)} auf eine kommutative Von-Neumann-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\mathcal M}\subset L(H)} , man kann sogar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\mathcal M}' = {\mathcal M}} zeigen, das heißt, die Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\mathcal M}} stimmt mit ihrem Kommutanten überein. Keine echte Oberalgebra kann daher kommutativ sein, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\mathcal M}} ist also eine maximale kommutative Von-Neumann-Algebra.
Betrachtet man speziell den Maßraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ([0,1],{\mathcal B},\lambda)} (Einheitsintervall mit dem Lebesgue-Maß), so kann man zeigen, dass der Bikommutant von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{M_f;\, f\in C([0,1])\}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\mathcal M}\cong L^{\infty}([0,1])} zusammenfällt. Der Übergang vom topologischen Konstrukt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C([0,1])} zum maßtheoretischen Konstrukt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^{\infty}([0,1])} entspricht dem Übergang von C*-Algebren zu Von-Neumann-Algebren. Während man bei C*-Algebren wegen des Satzes von Gelfand-Neumark von nicht-kommutativer Topologie spricht, gibt die hier angestellte Betrachtung Anlass, eine Von-Neumann-Algebra als einen nicht-kommutativen Maßraum anzusehen, man spricht daher auch von nicht-kommutativer Maßtheorie.
Eigenschaften
Jede Von-Neumann-Algebra ist eine C*-Algebra und somit auch eine Banachalgebra.
Wie sich aus dem beschränkten Borel-Funktionalkalkül ergibt, enthalten Von-Neumann-Algebren sehr viele Orthogonalprojektionen; jeder Operator ist in der Normtopologie Limes von Linearkombinationen von Orthogonalprojektionen. Dies ist ein wesentlicher Unterschied zu den C*-Algebren, die, wie das Beispiel C([0,1]) zeigt, neben 0 und 1 keine weiteren Projektionen enthalten müssen. Man kann aus der Menge der Projektionen einen Verband konstruieren; die Struktur dieses Verbandes wird zur Typklassifikation der Von-Neumann-Algebren herangezogen.
Siehe auch
- Typ I Von-Neumann-Algebra
- Typ II Von-Neumann-Algebra
- Typ III Von-Neumann-Algebra
- Tomita-Takesaki-Theorie
Literatur
- Jacques Dixmier: Von Neumann algebras, North-Holland Publishing, Amsterdam u. a. 1981 (North-Holland Mathematical Library, Band. 27), ISBN 0-444-86308-7.
- R.V. Kadison, J. R. Ringrose: Fundamentals of the Theory of Operator Algebras, Band I und II, Academic Press 1983, ISBN 0-123-93301-3 bzw. 1986, ISBN 0-123-93302-1
- Shôichirô Sakai: C*-Algebras and W*-Algebras, Springer, Berlin u. a. 1971 (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band. 60) ISBN 3-540-05347-6 (Nachdruck. ebenda 1998, ISBN 3-540-63633-1).
- Jacob T. Schwartz: W*-Algebras. Gordon & Breach, New York NY u. a. 1967.
Einzelnachweise
- ↑ F.J. Murray, J. von Neumann: On rings of operators. Ann. of Math. (2), Band 37, 1936, Seiten 116–229.
- ↑ F.J. Murray, J. von Neumann: On rings of operators II. Trans. Amer. Math. Soc., Band 41, 1937, Seiten 208–248
- ↑ F.J. Murray, J. von Neumann: On rings of operators IV. Ann. of Math. (2), Band 44, 1943, Seiten 716–808.
- ↑ Newsletter of the EMS, Juni 2009, Interview mit Jacques Dixmier, Seite 36