Komplementgraph

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Komplementärgraph)
[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:
Petersen-Graph (links) und dessen Komplementgraph (rechts).

Als Komplementgraph, komplementären Graph oder Komplement bezeichnet man in der Graphentheorie einen speziellen Graphen, den man aus einem gegebenen Graphen erhält.

Dabei besitzt der komplementäre Graph die gleichen Knoten wie der Ursprungsgraph, unterscheidet sich aber in seinen Kanten: Der Komplementgraph besitzt genau die Kanten, die der Ursprungsgraph nicht hat.

Definition

Sei ein ungerichteter bzw. gerichteter Graph ohne Mehrfachkanten. Der ungerichtete bzw. gerichtete Graph ohne Mehrfachkanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_2=(V,E_2)} heißt Komplementgraph von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_1} , wenn die Schnittmenge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_2} leer ist und die Vereinigungsmenge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_1} und

  • im ungerichteten Fall die Menge aller 2-elementigen Teilmengen von V bzw.
  • im gerichteten Fall das kartesische Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V\times V}

ergibt.

Der Komplementgraph eines gegebenen Graphen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} wird häufig auch mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{G}} bezeichnet. Als selbstkomplementär bezeichnet man Graphen, die isomorph zu ihrem komplementären Graphen sind.

Eigenschaften

  • Das Komplement des Komplementes von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} selbst.
  • Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |V|\geq 2} , so gilt: Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} nicht zusammenhängend, dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{G}} zusammenhängend.
  • Das Komplement eines bipartiten Graphen ist stets perfekt. Diese Aussage ist äquivalent zum Satz von König.[1]
  • Nach dem Satz von Loász ist ein Graph genau dann perfekt, wenn sein Komplementgraph perfekt ist.

Weblinks

Commons: Komplementgraph – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Reinhard Diestel: Graphentheorie. 3. Auflage. Springer, 2006, ISBN 978-3-662-53633-9, S. 138.