Lévyprozess
Lévyprozesse, benannt nach dem französischen Mathematiker Paul Lévy (1886–1971), sind stochastische Prozesse mit stationären, unabhängigen Zuwächsen. Sie beschreiben die zeitliche Entwicklung von Größen, die zwar zufälligen, aber über die Zeit (in Verteilung) gleich bleibenden und voneinander unabhängigen Einflüssen ausgesetzt sind. Viele wichtige Prozesse, wie der Wienerprozess oder der Poissonprozess, sind Lévyprozesse.
Definition
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_t),\; t \in T } ein stochastischer Prozess über der Indexmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} (meist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T= \R_+ } oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T = \N_0 } ). Man sagt, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_t} habe unabhängige Zuwächse, wenn für alle die Zufallsvariablen (die Zuwächse von ) unabhängig sind.
Ist die Verteilung der Zuwächse über gleich langen Zeitintervallen dieselbe, d. h. gilt
so nennt man einen Prozess mit stationären Zuwächsen.
Als Lévyprozesse bezeichnet man genau jene Prozesse , die unabhängige und stationäre Zuwächse aufweisen. Häufig wird zusätzlich noch verlangt, dass (fast sicher) gilt. Ist ein allgemeiner Lévyprozess, dann wird durch ein Lévyprozess Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle (Y_{t})} mit definiert. Im Folgenden sei stets vorausgesetzt.
Zeitdiskrete Lévyprozesse
Gilt speziell , so lässt sich die Klasse der Lévyprozesse sehr einfach charakterisieren: Es gibt nämlich für alle solchen Prozesse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_n)_{n \in \N_0}} eine Darstellung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_n= \sum_{i=1}^n Z_i, }
wobei unabhängige und identisch verteilte Zufallsvariablen sind. Andererseits ist für jede Folge von unabhängigen Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (Z_i)_{i\in\N}} , die alle die gleiche beliebig vorgegebene Verteilung haben, durch und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle X_n=\sum_{i=1}^n Z_i } ein Lévyprozess X definiert. Im zeitdiskreten Fall ist ein Lévyprozess also im Prinzip nichts anderes als ein Random Walk mit beliebiger, aber gleich bleibender Sprungverteilung. Das einfachste Beispiel für einen zeitdiskreten Lévyprozess ist demnach auch der einfache, symmetrische Random Walk, bei dem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2 X_1 - 1 } symmetrisch bernoulliverteilt ist. Hier bewegt sich der Prozess X, startend bei , in jedem Schritt mit Wahrscheinlichkeit ½ um Eins nach oben, andernfalls um Eins nach unten.
Zeitstetige Lévyprozesse
Im Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T=[0,\infty) } ist die Charakterisierung nicht mehr so leicht: So gibt es zum Beispiel keinen zeitstetigen Lévyprozess, bei dem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} wie oben bernoulliverteilt ist.
Jedoch sind zeitstetige Lévyprozesse eng verwandt mit dem Begriff der unendlichen Teilbarkeit: Ist nämlich ein Lévyprozess, so ist unendlich teilbar. Andererseits legt eine unendlich teilbare Zufallsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} bereits die Verteilung des gesamten Lévyprozesses Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_t)_{t \geq 1}} eindeutig fest. Jedem Lévyprozess entspricht also eine unendlich teilbare Verteilungsfunktion und umgekehrt.
Wichtige Beispiele für zeitstetige Lévyprozesse sind der Wienerprozess (auch Brownsche Bewegung genannt), bei dem die unendlich teilbare Verteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} eine Normalverteilung ist, oder der Poissonprozess, bei dem die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1} poissonverteilt ist. Doch auch viele andere Verteilungen, beispielsweise die Gammaverteilung oder die Cauchyverteilung, können zur Konstruktion von Lévyprozessen herangezogen werden. Neben dem deterministischen Prozess ist der Wienerprozess mit konstanter Drift und konstanter Volatilität der einzige stetige Lévyprozess, d. h. aus der Stetigkeit eines Lévyprozesses folgt schon die Normalverteilung seiner Zuwächse. Es existiert jedoch beispielsweise kein Lévyprozess mit gleichverteilten Zuständen.
Wichtig ist auch der Begriff der endlichen und unendlichen Aktivität: Gibt es in einem Intervall unendlich viele (und damit unendlich kleine) Sprünge oder nicht? Auskunft darüber gibt auch das Lévymaß.
Weiterhin sind Subordinatoren von Bedeutung, das sind Lévyprozesse mit fast sicher monoton wachsenden Pfaden. Ein Beispiel dafür ist der Gamma-Prozess. Die Differenz von zwei Gamma-Prozessen wird als variance-gamma-process bezeichnet.
Weitere Definition
Ein stochastischer Prozess über einem Wahrscheinlichkeitsraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega,\mathcal{F},P)} heißt Lévyprozess, wenn
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_0=0} ,
- unabhängige und stationäre Zuwächse hat und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_t} stochastisch stetig ist, d. h. für beliebige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon>0} und gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{t\to t_0} P(\vert X_t-X_{t_0}\vert>\varepsilon)=0} .
Lévy-Chintschin-Formel
Für jeden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^d} -wertigen Lévyprozess Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_t)_{t \geq 0}} lässt sich seine charakteristische Funktion schreiben in der Form:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(e^{i z X_t})=e^{t\psi(z)}}
mit dem charakteristischen Exponenten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi(z)=-\frac{1}{2}\langle z, Az \rangle + i \langle \gamma, z \rangle + \int_{\R^d}(e^{i \langle z, x \rangle}-1-i \langle z, x\rangle 1_{|x|\le 1})\nu(dx)}
und dem charakteristischen Tripel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (A, \nu, \gamma)} . Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \in \R^{d \times d}} eine symmetrische positiv definite Matrix, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma \in \R^d} ein Vektor und ein Maß auf mit
- und
Das charakteristische Tripel ist durch den Prozess eindeutig bestimmt.
Benannt ist diese Darstellung der charakteristischen Funktion eines Lévyprozesses nach Paul Lévy und Alexandr Chintschin.
Lévy-Itō-Zerlegung
Jeder Lévyprozess kann als eine Summe aus einer brownschen Bewegung, einem linearen Driftprozess und einem reinen Sprungprozess, welcher alle Sprünge des ursprünglichen Lévyprozesses beinhaltet, dargestellt werden. Diese Aussage ist bekannt als Lévy-Itō-Zerlegung.
Sei ein Lévyprozess in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^d} mit charakteristischem Tripel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (A, \nu, \gamma)} . Dann gibt es drei unabhängige Lévyprozesse, die alle auf dem gleichen Wahrscheinlichkeitsraum definiert sind, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X^{(1)}} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X^{(2)}} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X^{(3)}} , so dass:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X^{(1)}} ist eine brownsche Bewegung mit Drift, also ein Lévyprozess mit charakteristischem Tripel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (A, 0, \gamma)} ;
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X^{(2)} } ist ein Lévyprozess mit charakteristischem Tripel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (0, \nu|_{\R^d\backslash\{x; |x|\geq 1 \}},0)} (also ein Compound-Poissonprozess);
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X^{(3)}} ist ein quadratintegrierbares Martingal und ein reiner Sprungprozess mit dem charakteristischen Tripel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (0, \nu|_{\{x; |x|< 1 \}},0)} .
Wichtige Eigenschaften
- Die Erwartungswertfunktion eines Lévyprozesses Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_t)} ist linear in t, d. h.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(X_t) = t \operatorname{E}(X_1)} . Analog gilt für die Varianz
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(X_t) = t \operatorname{Var}(X_1)} (vorausgesetzt die entsprechenden Momente existieren zum Zeitpunkt 1). Für die Kovarianzfunktion gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Cov}(X_s,X_t) = \operatorname{Var}(X_{\min(s,t)})= \min(s,t) \operatorname{Var}(X_1) } .
- Falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E(X_1)=0 } gilt, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X_t)} ein Martingal.
Literatur
- J. Bertoin: Lévy Processes. Cambridge Tracts in Mathematics, Vol. 121, Cambridge University Press 2002, ISBN 0-521-64632-4
- A. E. Kyprianou: Introductory Lectures on fluctuations of Lévy process with applications. Universitext, Springer.
- Philip E. Protter: Stochastic Integration and Differential Equations. Springer, Berlin 2003, ISBN 3-540-00313-4
- Rama Cont, Peter Tankov: Financial Modelling with Jump Processes. Chapman & Hall, 2003, ISBN 1-58488-413-4
- Ken-iti Sato: Lévy Processes and Infinitely Divisible Distributions. Cambridge studies in advanced mathematics, 1999, ISBN 0-521-55302-4
Weblinks
- Uni-Skriptum über Lévy-Prozesse
- Jan Kallsen: Lévy-Prozesse anschaulich erklärt. (PDF; 778 kB)