Bernoulli-Verteilung
Zufallsgrößen mit einer Bernoulli-Verteilung (auch als Null-Eins-Verteilung, Alternativ-Verteilung[1] oder Boole-Verteilung[2] bezeichnet) benutzt man zur Beschreibung von zufälligen Ereignissen, bei denen es nur zwei mögliche Versuchsausgänge gibt. Einer der Versuchsausgänge wird meistens mit Erfolg bezeichnet und der komplementäre Versuchsausgang mit Misserfolg. Die zugehörige Wahrscheinlichkeit für einen Erfolg nennt man Erfolgswahrscheinlichkeit und die Wahrscheinlichkeit eines Misserfolgs. Beispiele:
- Werfen einer Münze: Kopf (Erfolg), , und Zahl (Misserfolg), .
- Werfen eines Würfels, wobei nur eine „6“ als Erfolg gewertet wird: , .
- Betrachte sehr kleines Raum/Zeit-Intervall: Ereignis tritt ein , tritt nicht ein .
Die Bezeichnung Bernoulli-Versuch (Bernoullian trials nach Jakob I Bernoulli) wurde erstmals 1937 in dem Buch Introduction to Mathematical Probability von James Victor Uspensky verwendet.[3]
Definition
Eine diskrete Zufallsgröße mit Werten in der Menge unterliegt der Null-Eins-Verteilung bzw. Bernoulli-Verteilung mit dem Parameter , wenn sie der folgenden Wahrscheinlichkeitsfunktion folgt
- .
Die Verteilungsfunktion ist dann
- .
Man schreibt dann oder .
Eine Reihe von unabhängigen identischen Versuchen, bei der jeder Einzelversuch der Bernoulli-Verteilung genügt, wird Bernoulli-Prozess oder bernoullisches Versuchsschema genannt.
Eigenschaften
Erwartungswert
Die Bernoulli-Verteilung mit Parameter hat den Erwartungswert:
Dies hat den Grund, dass für eine Bernoulli-verteilte Zufallsvariable mit und gilt:
Varianz und weitere Streumaße
Die Bernoulli-Verteilung besitzt die Varianz
denn es ist und damit
- .
Damit ist die Standardabweichung
und der Variationskoeffizient
- .
Symmetrie
Für den Parameter ist die Bernoulli-Verteilung symmetrisch um den Punkt .
Schiefe
Die Schiefe der Bernoulli-Verteilung ist
- .
Dies kann folgendermaßen gezeigt werden. Eine standardisierte Zufallsvariable mit Bernoulli-verteilt nimmt den Wert mit Wahrscheinlichkeit an und den Wert mit Wahrscheinlichkeit . Damit erhalten wir für die Schiefe
Wölbung und Exzess
Der Exzess der Bernoulli-Verteilung ist
und damit ist die Wölbung
- .
Momente
Alle k-ten Momente sind gleich und es gilt
- .
Es ist nämlich
- .
Entropie
Die Entropie der Bernoulli-Verteilung ist
gemessen in Bit.
Modus
Der Modus der Bernoulli-Verteilung ist
- .
Median
Der Median der Bernoulli-Verteilung ist
falls gilt, ist jedes ein Median.
Kumulanten
Die kumulantenerzeugende Funktion ist
- .
Damit sind die ersten Kumulanten und es gilt die Rekursionsgleichung
Wahrscheinlichkeitserzeugende Funktion
Die wahrscheinlichkeitserzeugende Funktion ist
- .
Charakteristische Funktion
Die charakteristische Funktion ist
- .
Momenterzeugende Funktion
Die momenterzeugende Funktion ist
- .
Beziehung zu anderen Verteilungen
Beziehung zur Binomialverteilung
Die Bernoulli-Verteilung ist ein Spezialfall der Binomialverteilung für . Mit anderen Worten, die Summe von unabhängigen Bernoulli-verteilten Zufallsgrößen mit identischem Parameter genügt der Binomialverteilung, demnach ist die Bernoulli-Verteilung nicht reproduktiv. Die Binomialverteilung ist die -fache Faltung der Bernoulli-Verteilung bei gleichem Parameter bzw. mit gleicher Wahrscheinlichkeit .
Beziehung zur verallgemeinerten Binomialverteilung
Die Summe von voneinander unabhängigen Bernoulli-verteilten Zufallsvariablen, die alle einen unterschiedlichen Parameter besitzen, ist verallgemeinert binomialverteilt.
Beziehung zur Poisson-Verteilung
Die Summe von Bernoulli-verteilten Zufallsgrößen genügt für , und einer Poisson-Verteilung mit dem Parameter . Dies folgt direkt daraus, dass die Summe binomialverteilt ist und für die Binomialverteilung die Poisson-Approximation gilt.
Beziehung zur Zweipunktverteilung
Die Bernoulli-Verteilung ist ein Spezialfall der Zweipunktverteilung mit . Umgekehrt ist die Zweipunktverteilung eine Verallgemeinerung der Bernoulli-Verteilung auf beliebige zweielementige Punktmengen.
Beziehung zur Rademacher-Verteilung
Sowohl die Bernoulli-Verteilung mit als auch die Rademacher-Verteilung modellieren einen fairen Münzwurf (oder eine faire, zufällige Ja/Nein-Entscheidung). Der Unterschied besteht lediglich darin, dass Kopf (Erfolg) und Zahl (Misserfolg) unterschiedlich codiert werden.
Beziehung zur geometrischen Verteilung
Bei Hintereinanderausführung von Bernoulli-verteilten Experimenten ist die Wartezeit auf den ersten Erfolg (oder letzten Misserfolg, je nach Definition) geometrisch verteilt.
Beziehung zur diskreten Gleichverteilung
Die Bernoulli-Verteilung mit ist eine diskrete Gleichverteilung auf .
Urnenmodell
Die Bernoulli-Verteilung lässt sich auch aus dem Urnenmodell erzeugen, wenn ist. Dann entspricht dies dem einmaligen Ziehen aus einer Urne mit Kugeln, von denen genau rot sind und alle anderen eine andere Farbe besitzen. Die Wahrscheinlichkeit, eine rote Kugel zu ziehen, ist dann Bernoulli-verteilt.
Simulation
Bei der Simulation macht man sich zunutze, dass wenn eine stetig gleichverteilte Zufallsvariable auf ist, die Zufallsvariable Bernoulli-verteilt ist mit Parameter . Da fast jeder Computer Standardzufallszahlen erzeugen kann, ist die Simulation wie folgend:
- Erzeuge eine Standardzufallszahl
- Ist , gib 0 aus, ansonsten gib 1 aus.
Dies entspricht genau der Inversionsmethode. Die einfache Simulierbarkeit von Bernoulli-verteilten Zufallsvariablen kann auch zur Simulation von binomialverteilten oder verallgemeinert Binomialverteilten Zufallsvariablen genutzt werden.
Literatur
- Hans-Otto Georgii: Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage, de Gruyter, 2009, ISBN 978-3-11-021526-7.
Einzelnachweise
- ↑ Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, S. 63, doi:10.1007/978-3-642-45387-8.
- ↑ Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, S. 254, doi:10.1007/978-3-642-21026-6.
- ↑ James Victor Uspensky: Introduction to Mathematical Probability, McGraw-Hill, New York 1937, Seite 45