Voigt-Profil

aus Wikipedia, der freien Enzyklopädie
Verschiedene Voigt-Profile jeweils mit Halbwertsbreite 2. Spezialfälle sind die Lorentz-Kurve (blau) und die Gauß-Kurve (grün).

Unter dem Voigt-Profil oder auch der Voigtfunktion (nach Woldemar Voigt) versteht man die Faltung einer Gauß-Kurve Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(x)} mit einer Lorentz-Kurve Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L(x)} .

Mathematische Beschreibung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V(x;\sigma,\gamma) = (G*L)(x) = \int G(\tau)L(x-\tau)d\tau }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(x;\sigma) = \frac{e^{-x^2/(2\sigma^2)}}{\sigma \sqrt{2\pi}} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L(x;\gamma) = \frac{\gamma}{\pi(x^2+\gamma^2)}. }

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} entspricht der Standardabweichung einer Gauß-Verteilung. In der Spektroskopie wird sie als Dopplerbreite bezeichnet. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma} ist die halbe Halbwertsbreite der Lorentzverteilung, in der Spektroskopie als Druckverbreitung bekannt. Das Voigt-Profil entsteht aus der Faltung des Gauß-Profils mit dem Lorentz-Profil. Das Voigt-Profil ist wie jeweils das Gauß- und Lorentz-Profil auf 1 normiert (Fläche unter den Profilen).

Numerische Darstellung

Für das Faltungsintegral existiert keine analytische Lösung, doch kann es als Realteil der Faddeeva-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(z)} (skalierte komplexe Fehlerfunktion, Plasma-Dispersionsfunktion) ausgedrückt werden, für die hinreichend gute Näherungen verfügbar sind:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V(x;\sigma,\gamma) = \frac{\operatorname{Re}\left[w(z)\right]}{\sigma\sqrt{2 \pi}}.}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} ist hier definiert als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z = \frac{x + i\gamma}{\sigma\sqrt{2}}.}

Die Breite des Voigt-Profils

Die Halbwertsbreite des Voigt-Profils lässt sich aus den Breiten der beteiligten Lorentz- und Gauß-Kurven bestimmen. Bekannt sind die Breiten des Gauß-Profils (fwhm: volle Breite bei halbem Maximum),

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{G} = \sqrt{8\ln(2)}\sigma,}

und des Lorentz-Profils,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{L} = 2\gamma.}

Die Breite des Voigt-Profils Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{V}} ist eine Funktion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{G}} und .

Die einfachste Näherung ist die symmetrische Interpolationsformel[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{V}\approx \sqrt{f_\mathrm{G}^2+f_\mathrm{L}^2},}

die jedoch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{V}} um bis zu 16 % unterschätzt.[2]

Eine bessere Näherung ist nach Olivero and Longbothum[3]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{V}\approx 0{,}5346 f_\mathrm{L} + \sqrt{0{,}2166f_\mathrm{L}^2 + f_\mathrm{G}^2}}

mit einer maximalen Abweichung von 0,023%.

Eigenschaften

Die Voigt-Funktion ist invariant gegenüber Faltung, d. h., die Faltung einer Voigt-Funktion mit einer weiteren Voigt-Funktion ergibt wieder eine Voigt-Funktion. Die Linienbreiten des Gauß- bzw. Lorentz-Anteils ergeben sich dabei zu:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{G}^{2} = \sum_{i}{(f_\mathrm{G}^{2})_{i}}}

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{L} = \sum_{i}{(f_\mathrm{L})_{i}}} .

Näherung durch Pseudo-Voigt-Profil

[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:
Beim Vergleich zwischen Voigt-Profil (blau) und Pseudo-Voigt-Profil (magenta) sind kaum Unterschiede erkennbar.

Das Pseudo-Voigt-Profil (oder die Pseudo-Voigt-Funktion) ist eine Näherungsfunktion für das Voigt-Profil, bei der die Faltung durch eine Linearkombination aus Gauß- und Lorentzkurve ersetzt wird. Es wird traditionell zur Ausgleichsrechnung von Röntgendiffraktometrie-Profilen verwendet. Seit eine effiziente und sehr genaue Implementierung der eigentlichen Voigt-Funktion zur Verfügung steht, gibt es keinen guten Grund mehr für die Verwendung dieser Näherung.

Mathematische Definition:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_p(x)=\eta \cdot L(x) + (1-\eta) \cdot G(x) \;}   mit   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0<\eta <1}
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle G(x)=\exp {\left[-\ln(2)\cdot \left({\frac {x-x_{0}}{w}}\right)^{2}\right]}\;}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L(x) = \frac{1}{1 + (\frac{x-x_0}{w})^{2}} }

Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2w} die Halbwertsbreite der Pseudo-Voigt-Funktion.

Beispiele

Bei einem großen Verhältnis zwischen Druck- und Dopplerverbreiterung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma/\sigma \gg 1} ist das Voigt-Profil mit dem Lorentz-Profil fast identisch. Nur unmittelbar an der Linienmitte tritt eine geringe Abrundung durch die Faltung mit der Gaußkurve auf. Liegt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma/\sigma} bei 1, wird der zentrale Teil der Linie durch das Gauß-Profil dominiert, man spricht dann vom Dopplerkern. Außen setzt sich jedoch das viel langsamer abfallende Lorentz-Profil durch, man bezeichnet diesen Bereich als Dämpfungsflügel. Im Falle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma/\sigma \ll 1} wird aus dem Voigt-Profil nahezu ein Gauß-Profil. Die logarithmische Darstellung (die Gaußkurve erscheint dann als Parabel) lässt jedoch erkennen, dass sehr weit von der Linienmitte entfernt immer noch das Lorentz-Profil hervortritt, allerdings dann auf sehr niedrigem Niveau.

Der Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma/\sigma \gg 1} entspricht durchwegs irdischen Bedingungen, denen etwa die Spektrallinien der in der Erdatmosphäre vorhandenen Moleküle unterworfen sind. Der Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma/\sigma = 1} oder gar setzt niedrige Drücke und hohe Temperaturen voraus, wie sie zumeist für Sternatmosphären charakteristisch sind.

Literatur

  • Woldemar Voigt: Das Gesetz der Intensitätsverteilung innerhalb der Linien eines Gasspektrums. Sitzungsbericht der Bayerischen Akademie der Wissenschaften, Band 25, 1912, S. 603–620, (online).
  • Z. Shippony, W. G. Read, A Highly Accurate Voigt Function Algorithm. In: Journal of Quantitative Spectroscopy & Radiative Transfer. Bd. 50, Nr. 6, 1993, ISSN 0022-4073, S. 635–645, doi:10.1016/0022-4073(93)90031-C; Erratum: A Correction to a Highly Accurate Voigt Function Algorithm. ebenda Bd. 78, Nr. 2, 2003, S. 255, doi:10.1016/S0022-4073(02)00169-3.

Einzelnachweise

  1. Danos & Geshwind, Phys Rev91, 1159 (1953).
  2. Ablesbar aus Fig. 1 in Olivero & Longbothom (1977)
  3. J. J. Olivero, R. L. Longbothum: Empirical fits to the Voigt line width: A brief review. In: Journal of Quantitative Spectroscopy & Radiative Transfer. Bd. 17, Nr. 2, 1977, S. 233–236, doi:10.1016/0022-4073(77)90161-3.

Weblinks

  • https://jugit.fz-juelich.de/mlz/libcerf, numerische C-Bibliothek für komplexe Fehlerfunktionen von Steven G. Johnson und Joachim Wuttke, enthält eine Funktion voigt (x, sigma, gamma) mit ungefähr 13-stelliger Genauigkeit.