Gumbel-Verteilung

aus Wikipedia, der freien Enzyklopädie

Die Gumbel-Verteilung (nach Emil Julius Gumbel), die Fisher-Tippett-Verteilung (nach Ronald Aylmer Fisher) oder Extremal–I–Verteilung ist eine stetige Wahrscheinlichkeitsverteilung, die wie die Rossi-Verteilung und die Fréchet-Verteilung zu den Extremwertverteilungen gehört.

Definition

Dichtefunktion f(x) der Gumbel-Verteilung

Eine stetige Zufallsgröße genügt einer Gumbel-Verteilung mit Skalenparameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta>0} und Lageparameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu\in\mathbb{R}} , wenn sie die Wahrscheinlichkeitsdichte

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)= \frac{1}{\beta}\mathrm{e}^{-\frac{1}{\beta}(x-\mu)} \mathrm{e}^{-\mathrm{e}^{-\frac{1}{\beta}(x-\mu)}},~ x\in\mathbb{R}}

und damit die Verteilungsfunktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x)= \mathrm{e}^{-\mathrm{e}^{-\frac{1}{\beta}(x-\mu)}},~ x\in\mathbb{R}}

besitzt.

Standard-Fall

Werden keine Parameter angegeben, so sind die Standard-Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu=0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta=1} gemeint. Damit ergibt sich die Dichte

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)= \mathrm{e}^{-x} \mathrm{e}^{-\mathrm{e}^{-x}},~ x\in\mathbb{R}}

und die Verteilungsfunktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x)= \mathrm{e}^{-\mathrm{e}^{-x}},~ x\in\mathbb{R}}

Durch die affin-linearen Transformationen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X \mapsto Y := a + b X} erhält man die ganze oben angegebene Klasse von Verteilungen mit den Eigenschaften

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_Y(x) = F\left(\frac{x-a}{b}\right)}
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f_{Y}(x)={\frac {1}{b}}f\left({\frac {x-a}{b}}\right)}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(Y) = b \operatorname{E}(X) + a}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(Y) = b^2 \operatorname{Var}(X)} .

Eigenschaften

Erwartungswert

Die Gumbelverteilung besitzt den Erwartungswert

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{E}(X) = \mu + \beta \gamma} .

Dabei ist die Euler-Mascheroni-Konstante.

Varianz

Die Varianz einer Gumbelverteilung ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Var}(X) = \frac{(\pi\beta)^{2}}{6}} .

Standardabweichung

Die Standardabweichung einer Gumbelverteilung ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma = \frac{\pi\beta}{\sqrt{6}}} .

Anwendung

Sie wird u. a. in folgenden Bereichen benutzt:

Die Gumbel-Verteilung ist eine typische Verteilungsfunktion für jährliche Serien. Sie kann nur auf Reihen angewendet werden, bei denen die Länge der Messreihe mit dem Stichprobenumfang übereinstimmt. Ansonsten erhält man negative Logarithmen.

Beziehung zu anderen Verteilungen

Beziehung zur Extremwertverteilung

Als Doppelexponentialverteilung wird der Spezialfall der Extremwertverteilung mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi=0} (also die Gumbel-Verteilung) bezeichnet[1]. Die Verteilungsfunktion hat dann die Form (bei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mu =0,\beta =1} )

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_P(x)=\exp(- \exp (-x))) .}

Weblinks

Einzelnachweise

  1. Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, doi:10.1515/9783110215274.